login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074229 Numbers n such that Kronecker(6,n)==mu(gcd(6,n)). 2
1, 5, 19, 23, 25, 29, 43, 47, 49, 53, 67, 71, 73, 77, 91, 95, 97, 101, 115, 119, 121, 125, 139, 143, 145, 149, 163, 167, 169, 173, 187, 191, 193, 197, 211, 215, 217, 221, 235, 239, 241, 245, 259, 263, 265, 269, 283, 287, 289, 293, 307, 311, 313, 317, 331, 335 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

From Colin Barker, Dec 14 2015: (Start)

a(n) = (3/2+(3*i)/2)*(i^n-i*(-i)^n)-(-1)^n+6*(n+1)-9 where i = sqrt(-1).

a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.

G.f.: x*(1+4*x+14*x^2+4*x^3+x^4) / ((1-x)^2*(1+x)*(1+x^2)).

(End)

PROG

(PARI) for (x=1, 200, for (y=1, 200, if (kronecker(x, y)==moebius(gcd(x, y)), write("km.txt", x, "; ", y, " : ", kronecker(x, y)))))

(PARI) isok(n) = kronecker(6, n) == moebius(gcd(6, n)); \\ Michel Marcus, Mar 17 2014

(PARI) Vec(x*(1+4*x+14*x^2+4*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100)) \\ Colin Barker, Dec 14 2015

CROSSREFS

Equals 2 * A072065 + 1.

Sequence in context: A032731 A275954 A087840 * A152912 A191054 A097934

Adjacent sequences:  A074226 A074227 A074228 * A074230 A074231 A074232

KEYWORD

nonn,easy

AUTHOR

Jon Perry, Sep 17 2002

EXTENSIONS

More terms from Michel Marcus, Mar 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 06:30 EST 2021. Contains 349532 sequences. (Running on oeis4.)