login
A074197
Let b(1) = n, b(k+1) = b(k)/2 + k if b(k) is even, b(k+1) = b(k)-k otherwise; sequence gives values of b(1) = n such that b(k) = 2k-4 for k large enough.
1
1, 11, 16, 18, 39, 44, 53, 57, 74, 102, 110, 111, 116, 125, 147, 152, 155, 160, 201, 218, 246, 273, 287, 289, 290, 292, 301, 306, 323, 328, 375, 380, 389, 391, 396, 398, 405, 507, 512, 542, 553, 570, 574, 598, 625, 642, 683, 688, 703, 708, 715, 717, 720, 729, 739, 744, 746
OFFSET
1,2
LINKS
FORMULA
a(n)/(n*log(n)) seems bounded and maybe a(n) is asymptotic to c*n*log(n) where 3 < c < 5.
PROG
(PARI) isok(m) = {my(N=1000, v=vector(N), prec=m, nb=0); v[1] = prec; for (n=2, N, v[n] = if (prec % 2, prec-n+1, prec/2+n-1); prec = v[n]; if (prec == 2*n-4, nb++); ); nb > N/10; } \\ Michel Marcus, Feb 16 2021
CROSSREFS
Sequence in context: A097156 A138791 A132990 * A106673 A329389 A227080
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 16 2002
EXTENSIONS
More terms from Michel Marcus, Feb 15 2021
STATUS
approved