Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 04 2020 21:11:57
%S 6,-1,-3,-1,17,-16,-15,13,81,-127,-58,175,329,-885,-31,1424,833,-5543,
%T 2181,9233,-2298,-31025,27893,49495,-54879,-150416,245697,204965,
%U -526887,-570895,1801670,407711,-3882303,-946397,11542929,-3442672,-24121039,10317745,64959629,-56727711,-127083514
%N Sum of determinants of 2nd order principal minors of powers of the matrix ((1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)).
%C From _Kai Wang_, Oct 21 2020: (Start)
%C Let f(x) = x^4 - x^3 - x^2 - x - 1 be the characteristic polynomial for Tetranacci numbers (A000078). Let {x1,x2,x3,x4} be the roots of f(x). Then a(n) = (x1*x2)^n + (x1*x3)^n + (x1*x4)^n + (x2*x3)^n + (x2*x4)^n + (x3*x4)^n.
%C Let g(y) = y^6 + y^5 + 2*y^4 + 2*y^3 - 2*y^2 + y - 1 be the characteristic polynomial for a(n). Let {y1,y2,y3,y4,y5,y6} be the roots of g(y). Then a(n) = y1^n + y2^n + y3^n + y4^n + y5^n + y6^n. (End)
%H Michael De Vlieger, <a href="/A074193/b074193.txt">Table of n, a(n) for n = 0..5052</a>
%H Kai Wang, <a href="https://doi.org/10.13140/RG.2.2.19649.79209">Identities, generating functions and Binet formula for generalized k-nacci sequences</a>, 2020.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,-2,2,-1,1).
%F a(n) = -a(n-1)-2a(n-2)-2a(n-3)+2a(n-4)-a(n-5)+a(n-6).
%F G.f.: (6+5x+8x^2+6x^3-4x^4+x^5)/(1+x+2x^2+2x^3-2x^4+x^5-x^6).
%F abs(a(n)) = abs(A074453(n)). - _Joerg Arndt_, Oct 22 2020
%t CoefficientList[Series[(6+5*x+8*x^2+6*x^3-4*x^4+x^5)/(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6), {x, 0, 50}], x]
%o (PARI) polsym(x^6 + x^5 + 2*x^4 + 2*x^3 - 2*x^2 + x - 1,44) \\ _Joerg Arndt_, Oct 22 2020
%Y Cf. A073817, A073937, A000078, A074081.
%K easy,sign
%O 0,1
%A Mario Catalani (mario.catalani(AT)unito.it), Aug 20 2002