login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074037
Sum of the composites between the smallest prime factor of n and the largest prime factor of n.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 4, 0, 0, 0, 0, 4, 10, 37, 0, 0, 0, 49, 0, 10, 0, 4, 0, 0, 37, 94, 6, 0, 0, 112, 49, 4, 0, 10, 0, 37, 4, 175, 0, 0, 0, 4, 94, 49, 0, 0, 33, 10, 112, 305, 0, 4, 0, 335, 10, 0, 45, 37, 0, 94, 175, 10, 0, 0, 0, 505, 4, 112, 27, 49, 0, 4, 0, 622, 0, 10
OFFSET
1,10
COMMENTS
Record values (A079725) occur at 2*primes (A001747).
LINKS
Jason Earls, Some Smarandache-type sequences and problems concerning abundant and deficient numbers, in Smarandache Notions Journal (2004), Vol. 14.1, pp 265-270.
EXAMPLE
a(14) = 10 because 2*7 = 14 and 4 + 6 = 10.
MAPLE
with(numtheory): a:=proc(n) local nf, nnf, s, j: nf:=factorset(n): nnf:=nops(nf): s:=0: for j from nf[1] to nf[nnf] do if isprime(j)=false then s:=s+j else s:=s: fi: od: s: end: 0, seq(a(n), n=2..84); # Emeric Deutsch
MATHEMATICA
sc[n_]:=Module[{pfacs=Transpose[FactorInteger[n]][[1]], a, b}, a=Min[ pfacs]+1; b=Max[pfacs]-1; Total[Select[Range[a, b], !PrimeQ[#]&]]]; Array[sc, 90] (* Harvey P. Dale, Nov 14 2011 *)
CROSSREFS
Sequence in context: A060278 A046770 A046782 * A285132 A239261 A242707
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Sep 15 2002
STATUS
approved