login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A074037
Sum of the composites between the smallest prime factor of n and the largest prime factor of n.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 4, 0, 0, 0, 0, 4, 10, 37, 0, 0, 0, 49, 0, 10, 0, 4, 0, 0, 37, 94, 6, 0, 0, 112, 49, 4, 0, 10, 0, 37, 4, 175, 0, 0, 0, 4, 94, 49, 0, 0, 33, 10, 112, 305, 0, 4, 0, 335, 10, 0, 45, 37, 0, 94, 175, 10, 0, 0, 0, 505, 4, 112, 27, 49, 0, 4, 0, 622, 0, 10
OFFSET
1,10
COMMENTS
Record values (A079725) occur at 2*primes (A001747).
LINKS
Jason Earls, Some Smarandache-type sequences and problems concerning abundant and deficient numbers, in Smarandache Notions Journal (2004), Vol. 14.1, pp 265-270.
EXAMPLE
a(14) = 10 because 2*7 = 14 and 4 + 6 = 10.
MAPLE
with(numtheory): a:=proc(n) local nf, nnf, s, j: nf:=factorset(n): nnf:=nops(nf): s:=0: for j from nf[1] to nf[nnf] do if isprime(j)=false then s:=s+j else s:=s: fi: od: s: end: 0, seq(a(n), n=2..84); # Emeric Deutsch
MATHEMATICA
sc[n_]:=Module[{pfacs=Transpose[FactorInteger[n]][[1]], a, b}, a=Min[ pfacs]+1; b=Max[pfacs]-1; Total[Select[Range[a, b], !PrimeQ[#]&]]]; Array[sc, 90] (* Harvey P. Dale, Nov 14 2011 *)
CROSSREFS
Sequence in context: A060278 A046770 A046782 * A285132 A239261 A242707
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Sep 15 2002
STATUS
approved