%I #18 Nov 11 2024 08:57:54
%S 0,2,0,12,30,72,252,702,2268,6480,19602,59292,176904,532170,1592136,
%T 4785156
%N Number of elements of GF(3^n) with trace 0 and subtrace 1.
%H Frank Ruskey, <a href="http://combos.org/TSGF3">Number of Elements of GF(3^n) with given trace and subtrace</a>
%e a(2;0,1)=2. Let GF(3^2) be defined by the field extension GF(3)[x]/( 2+b+b^2 ). The two elements of GF(3^2) with trace 0 and subtrace 1 are { 2+b, 1+2b }.
%Y Cf. A074000, A074002, A074003, A074004, A074005.
%K nonn,more,changed
%O 1,2
%A _Frank Ruskey_ and Nate Kube, Aug 19 2002
%E Terms a(13), a(15), a(16) corrected, unverified terms a(17)-a(20) removed. Based on the original Data in A074000-A074005, a(17)-a(20) are possibly equal to 14351094, 43053282, 129146724, 387400806. - _Andrey Zabolotskiy_, Nov 11 2024