login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strings of length n over Z_6 with trace 1 and subtrace 3.
23

%I #18 May 02 2019 16:18:38

%S 0,0,3,36,300,1620,8100,44928,262440,1574640,9722592,60466176,

%T 369476640,2213827200,13162730688,78364164096,468419708160,

%U 2810089946880,16891882995456,101554796888064,609954817881600,3659728907289600,21947538146863104,131621703842267136

%N Number of strings of length n over Z_6 with trace 1 and subtrace 3.

%C Same as the number of strings of length n over Z_6 with trace 5 and subtrace 3.

%H Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP scripts for miscellaneous math problems</a>

%H F. Ruskey <a href="http://combos.org/TSstringZ6">Strings over Z_6 with given trace and subtrace</a>

%F a(n; t, s) = a(n-1; t, s) + a(n-1; t+5, s+5t+1) + a(n-1; t+4, s+4t+4) + a(n-1; t+3, s+3t+3) + a(n-1; t+2, s+2t+2) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.

%Y Cf. A073971, A073972, A073973, A073974, A073975, A073976, A073977, A073979, A073980, A073981, A073982, A073983, A073984, A073985, A073986, A073987, A073988, A073989, A073990, A073991, A073992, A073993, A073994.

%K easy,nonn

%O 1,3

%A _Frank Ruskey_, Nate Kube, Aug 16 2002

%E Terms a(11) onward from _Max Alekseyev_, Apr 09 2013