login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime p with bigomega(p-1)=n, where bigomega(m)=A001222(m) is the number of prime divisors of m (counted with multiplicity).
4

%I #22 Sep 28 2014 12:13:24

%S 2,3,5,13,17,73,97,193,257,769,3457,7681,15361,12289,40961,114689,

%T 65537,737281,1376257,786433,5308417,7340033,14155777,28311553,

%U 104857601,113246209,167772161,469762049,2113929217,1811939329

%N Smallest prime p with bigomega(p-1)=n, where bigomega(m)=A001222(m) is the number of prime divisors of m (counted with multiplicity).

%H David W. Wilson and Robert G. Wilson v, <a href="/A073919/b073919.txt">Table of n, a(n) for n = 0..351</a>

%e a(2) = 5 = 2*2 + 1. a(5) = 73 = 2*2*2*3*3 + 1.

%t ptns[n_, 0] := If[n==0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[n<k, Return[{}]]; ptns[n, k]=1+Union@@Table[PadRight[ #, k]&/@ptns[n-k, r], {r, 0, k}]]; a[n_] := Module[{i, l, v}, v=Infinity; For[i=n, True, i++, l=(Times@@Prime/@#&)/@ptns[i, n]; If[Min@@l>v, Return[v]]; minp=Min@@Select[l+1, ProvablePrimeQ]; If[minp<v, v=minp]]] (* First do <<NumberTheory`PrimeQ`. ptns[n, k] is list of partitions of n into exactly k parts *) Array[a, 30, 0]

%t With[{x=Table[{Prime[n],PrimeOmega[Prime[n]-1]},{n,104000000}]},Transpose[ Table[ SelectFirst[x,#[[2]]==i&],{i,0,29}]][[1]]] (* _Harvey P. Dale_, Sep 28 2014 *)

%Y Cf. A118883.

%K nonn

%O 0,1

%A _Amarnath Murthy_, Aug 18 2002

%E Edited by _Dean Hickerson_, Nov 12 2002