login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cumulative sum of initial digits of (n base 4).
0

%I #23 Sep 08 2022 08:45:06

%S 0,1,3,6,7,8,9,10,12,14,16,18,21,24,27,30,31,32,33,34,35,36,37,38,39,

%T 40,41,42,43,44,45,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,

%U 81,84,87,90,93,96,99,102,105,108,111,114,117,120,123,126,127,128,129,130

%N Cumulative sum of initial digits of (n base 4).

%H Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, <a href="http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf">Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications</a>, Preprint 2016.

%H Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, <a href="https://doi.org/10.1145/3127585">Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications</a>, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.

%F a(n) = Sum_{i=0..n} A000030(A007090(n)).

%F a(n) = Sum_{i=0..n} first-digit(i base 4) where (i base 4) = A007090(i).

%e n in init cumulative

%e n base 4 dgt sum

%e - ------ ---- ----------

%e 0 0 0 0

%e 1 1 1 1

%e 2 2 2 3

%e 3 3 3 6

%e 4 10 1 7

%e 5 11 1 8

%o (Magma) [0] cat [&+[Reverse(Intseq(k,4))[1]:k in [1..n]]:n in [1..70]]; // _Marius A. Burtea_, Dec 19 2019

%Y Cf. A000030, A007090, A109453.

%K base,easy,nonn

%O 0,3

%A _Jonathan Vos Post_, Aug 28 2005