login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of primes p satisfying n <= p <= 2n.
7

%I #19 Feb 23 2018 15:33:51

%S 2,6,15,35,35,77,1001,143,2431,46189,46189,96577,96577,7429,215441,

%T 6678671,6678671,392863,14535931,765049,31367009,1348781387,

%U 1348781387,2756205443,2756205443,2756205443,146078888479,146078888479,146078888479,297194980009

%N Product of primes p satisfying n <= p <= 2n.

%C a(n) = A034386(2*n)/A034386(n-1); A179214(n) <= a(n). - _Reinhard Zumkeller_, Jul 05 2010

%H T. D. Noe, <a href="/A073838/b073838.txt">Table of n, a(n) for n = 1..500</a>

%e a(7) = 1001 = 7*11*13 (product of primes between 7 and 14).

%p for n from 1 to 50 do l := 1:for j from n to 2*n do if isprime(j) then l := l*j:fi:od:a[n] := l:od:seq(a[j],j=1..50);

%t Table[Times @@ Select[Range[n, 2 n], PrimeQ], {n, 28}] (* _Jayanta Basu_, Aug 12 2013 *)

%o (PARI) a(n)=prod(i=n,2*n,i^isprime(i))

%Y Cf. A073837.

%K nonn

%O 1,1

%A _Amarnath Murthy_ and _Benoit Cloitre_, Aug 12 2002

%E More terms from _Sascha Kurz_, Aug 14 2002

%E Missing a(29) inserted by _Andrew Howroyd_, Feb 23 2018