login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073782
a(n) = Sum_{k=0..n} S(k)*S(n-k), convolution of S=A001644 with itself.
1
9, 6, 19, 48, 89, 190, 391, 784, 1577, 3142, 6219, 12256, 24041, 46974, 91471, 177568, 343753, 663814, 1278979, 2459152, 4719417, 9041470, 17294039, 33030320, 62999145, 120006214, 228327099, 433939904, 823854793, 1562602238
OFFSET
0,1
FORMULA
G.f.: (3-2*x-x^2)^2/(1-x-x^2-x^3)^2.
MATHEMATICA
CoefficientList[Series[(3-2x-x^2)^2/(1-x-x^2-x^3)^2, {x, 0, 30}], x]
PROG
(PARI) my(x='x+O('x^30)); Vec((3-2*x-x^2)^2/(1-x-x^2-x^3)^2) \\ G. C. Greubel, Apr 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-2*x-x^2)^2/(1-x-x^2-x^3)^2 )); // G. C. Greubel, Apr 12 2019
(Sage) ((3-2*x-x^2)^2/(1-x-x^2-x^3)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 12 2019
CROSSREFS
Cf. A001644.
Sequence in context: A272960 A040074 A088999 * A156033 A196005 A196002
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 11 2002
STATUS
approved