login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490.
17

%I #42 Dec 28 2019 17:05:20

%S 2,3,2,5,2,3,7,2,11,13,2,3,5,17,19,23,2,29,31,7,3,37,41,43,2,47,53,59,

%T 5,61,67,71,73,11,79,2,83,3,89,97,13,101,103,107,109,113,127,131,137,

%U 139,2,149,151,7,157,163,167,17,173,179,181,191,193,197,199,19,211,3

%N Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490.

%C The Mathematica program presents a very fast method of computing the factors of colossally abundant numbers. The 100th number has a sigma(n)/n ratio of 10.5681.

%C This calculation assumes that the ratio of consecutive colossally abundant numbers is always prime, which is implied by a conjecture mentioned in Lagarias's paper.

%C The ratio of consecutive colossally abundant numbers is prime for at least the first 10^7 terms. The (10^7)-th term is a 77908696-digit number which has a sigma(n)/n value of 33.849.

%C Alaoglu and Erdős's paper proves that the quotient of two consecutive colossally abundant numbers is either a prime or the product of two distinct primes.

%C From _Robert G. Wilson v_, May 30 2014: (Start)

%C First occurrence of the n-th prime: 1, 2, 4, 7, 9, 10, 14, 15, 16, 18, 19, 22, 23, 24, 26, 27, 28, 30, 31, 32, ..., .

%C Positions of 2: 1, 3, 5, 8, 11, 17, 25, 36, 51, 77, 114, 178, 282, 461, 759, 1286, 2200, 3812, 6664, ..., .

%C Positions of 3: 2, 6, 12, 21, 38, 68, 132, 271, 595, 1356, 3191, 7775, ..., . (End)

%H T. D. Noe, <a href="/A073751/b073751.txt">Table of n, a(n) for n = 1..10000</a>

%H L. Alaoglu and P. Erdos, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers,</a> Trans. Amer. Math. Soc., 56 (1944), 448-469. <a href="http://upforthecount.com/math/errata.html">Errata</a>

%H Keith Briggs, <a href="http://projecteuclid.org/euclid.em/1175789744">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), p. 251-256.

%H Young Ju Choie; Nicolas Lichiardopol; Pieter Moree; Patrick Solé, <a href="https://doi.org/10.5802/jtnb.591">On Robin's criterion for the Riemann hypothesis</a>, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372.

%H J. C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An elementary problem equivalent to the Riemann hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.

%H T. Schwabhäuser, <a href="http://arxiv.org/abs/1308.3678">Preventing Exceptions to Robin's Inequality</a>, arXiv preprint arXiv:1308.3678 [math.NT], 2013.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ColossallyAbundantNumber.html">Colossally Abundant Number</a>

%t pFactor[f_List] := Module[{p=f[[1]], k=f[[2]]}, N[Log[(p^(k+2)-1)/(p^(k+1)-1)]/Log[p]]-1]; maxN=100; f={{2, 1}, {3, 0}}; primes=1; lst={2}; x=Table[pFactor[f[[i]]], {i, primes+1}]; For[n=2, n<=maxN, n++, i=Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i>primes, primes++; AppendTo[f, {Prime[i+1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]]=pFactor[f[[i]]]]; lst

%Y Cf. A004490.

%K nonn

%O 1,1

%A _T. D. Noe_, Aug 07 2002