login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Table, read by antidiagonals, generated by successive convolutions of the first row such that the first row equals the same table in this flattened form.
0

%I #17 Aug 05 2013 07:09:09

%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,2,1,5,10,10,7,1,1,6,15,20,18,8,1,1,7,21,

%T 35,39,27,9,3,1,8,28,56,75,68,37,14,3,1,9,36,84,132,146,108,54,20,1,1,

%U 10,45,120,217,282,260,168,81,20,1,1,11,55,165,338,504,552,440,263,106

%N Table, read by antidiagonals, generated by successive convolutions of the first row such that the first row equals the same table in this flattened form.

%F Let first row sequence be a(n)=T(0, n); define f(x) = sum_{k=0..inf} a(k)x^k, then the n-th row is generated by: f(x)^(n+1) = sum_{k=0..inf} T(n, k)x^k.

%e Table read by antidiagonals gives first row; subsequent rows generated by convolutions of first row sequence.

%e 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4,...;

%e 1, 2, 3, 4, 7, 8, 9, 14, 20, 20, 21, 32,...;

%e 1, 3, 6, 10, 18, 27, 37, 54, 81, 106, 132, 180,...;

%e 1, 4, 10, 20, 39, 68, 54, 168, 263, 388, 544, 768,...;

%e 1, 5, 15, 35, 75, 108, 260, 440, 730,1165,1781,2670,...;

%e 1, 6, 21, 56, 132, 282, 552,1014,1794,3058,5013,...;

%e 1, 7, 28, 84, 217, 504,1071,2122,4004,7252,...;

%e 1, 8, 36, 120, 338, 848,1940,4120,8271,...;

%e 1, 9, 45, 165, 504,1359,3327,7533,...;

%e 1,10, 55, 220, 725,2092,5455,...;

%e 1,11, 66, 286,1012,3113,...;

%e 1,12, 78, 364,1377,...;

%e 1,13, 91, 455,...;

%e 1,14,105,...;

%e 1,15,...; ...

%t max = 75; a[0] = 1; se[n_] := se[n] = Series[ Sum[x^(j*(j + 1)/2)*(1 + x)^j, {j, 0, max - n}]^(n + 1), {x, 0, max - n}]; t[n_, k_] := t[n, k] = Coefficient[se[n], x, k]; ft = Flatten[ Table[t[n - j, j], {n, 0, max}, {j, 0, n}]][[1 ;; max + 1]]; sol = Thread[ft == Table[a[k], {k, 0, max}]] // Solve; sol /. Rule -> Set; Table[a[k], {k, 0, max}] (* _Jean-François Alcover_, Aug 05 2013 *)

%K easy,nice,nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Aug 05 2002

%E a(65) corrected by _Jean-François Alcover_, Aug 05 2013