Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Aug 05 2013 07:09:09
%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,2,1,5,10,10,7,1,1,6,15,20,18,8,1,1,7,21,
%T 35,39,27,9,3,1,8,28,56,75,68,37,14,3,1,9,36,84,132,146,108,54,20,1,1,
%U 10,45,120,217,282,260,168,81,20,1,1,11,55,165,338,504,552,440,263,106
%N Table, read by antidiagonals, generated by successive convolutions of the first row such that the first row equals the same table in this flattened form.
%F Let first row sequence be a(n)=T(0, n); define f(x) = sum_{k=0..inf} a(k)x^k, then the n-th row is generated by: f(x)^(n+1) = sum_{k=0..inf} T(n, k)x^k.
%e Table read by antidiagonals gives first row; subsequent rows generated by convolutions of first row sequence.
%e 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4,...;
%e 1, 2, 3, 4, 7, 8, 9, 14, 20, 20, 21, 32,...;
%e 1, 3, 6, 10, 18, 27, 37, 54, 81, 106, 132, 180,...;
%e 1, 4, 10, 20, 39, 68, 54, 168, 263, 388, 544, 768,...;
%e 1, 5, 15, 35, 75, 108, 260, 440, 730,1165,1781,2670,...;
%e 1, 6, 21, 56, 132, 282, 552,1014,1794,3058,5013,...;
%e 1, 7, 28, 84, 217, 504,1071,2122,4004,7252,...;
%e 1, 8, 36, 120, 338, 848,1940,4120,8271,...;
%e 1, 9, 45, 165, 504,1359,3327,7533,...;
%e 1,10, 55, 220, 725,2092,5455,...;
%e 1,11, 66, 286,1012,3113,...;
%e 1,12, 78, 364,1377,...;
%e 1,13, 91, 455,...;
%e 1,14,105,...;
%e 1,15,...; ...
%t max = 75; a[0] = 1; se[n_] := se[n] = Series[ Sum[x^(j*(j + 1)/2)*(1 + x)^j, {j, 0, max - n}]^(n + 1), {x, 0, max - n}]; t[n_, k_] := t[n, k] = Coefficient[se[n], x, k]; ft = Flatten[ Table[t[n - j, j], {n, 0, max}, {j, 0, n}]][[1 ;; max + 1]]; sol = Thread[ft == Table[a[k], {k, 0, max}]] // Solve; sol /. Rule -> Set; Table[a[k], {k, 0, max}] (* _Jean-François Alcover_, Aug 05 2013 *)
%K easy,nice,nonn,tabl
%O 0,5
%A _Paul D. Hanna_, Aug 05 2002
%E a(65) corrected by _Jean-François Alcover_, Aug 05 2013