Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 24 2024 09:31:37
%S 1,1,1,4,1,1,2,2,1,1,5,1,3,10,1,1,2,1,4,1,2,2,8,3,2,2,6,3,2,1,12,2,1,
%T 3,4,1,1,7,4,1,2,1,2,6,3,6,2,1,1,7,19,26,5,2,3,1,81,3,56,28,23,2,2,17,
%U 1,6,4,9,1,2,4,1,5,9,1,7,3,1,2,16,1,6,49,7,1,2,6,3,1,6,17,3,1
%N Product of next a(n) odd numbers plus 2 is prime.
%C Group the odd numbers so that the product of the terms in each group + 2 is a prime: (1), (3), (5), (7, 9, 11, 13), (15), (17), (19, 21), (23, 25), (27), (29), ...; sequence gives the number of terms in each group.
%C a(n) is the least k >= 1 such that if sum_{i < n} a(i) = m, 2 + product_{m+1 <= i <=m+k} (2i-1) is prime. - _Robert Israel_, Sep 23 2024
%H Robert Israel, <a href="/A073693/b073693.txt">Table of n, a(n) for n = 0..1263</a>
%p m:= 0: A:= NULL: P:= 1: count:= 0:
%p for i from 1 do
%p P:= P*(2*i-1);
%p if isprime(P+2) then
%p A:= A, i-m;
%p m:= i; P:= 1;
%p count:= count+1; if count = 101 then break fi;
%p fi
%p od:
%p A; # _Robert Israel_, Sep 23 2024
%t t = {}; s = 1; c = 0; Do[s = s*i; c += 1; If[PrimeQ[s + 2], AppendTo[t, c]; s = 1; c = 0], {i, 1, 1200, 2}]; t (* _Jayanta Basu_, Jul 07 2013 *)
%o (PARI) o=1:for(k=1,100,n=1:p=o:while(!isprime(p+2),o=o+2:p=p*o:n=n+1):o=o+2:print1(n","))
%Y Cf. A073691, A073692.
%K nonn
%O 0,4
%A _Amarnath Murthy_, Aug 12 2002
%E Corrected and extended by _Ralf Stephan_, Mar 18 2003
%E Name clarified by _Robert Israel_, Sep 23 2024