Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:45:06
%S 1,2,8,30,113,428,1629,6226,23881,91884,354484,1370812,5312058,
%T 20622904,80196055,312319530,1217938665,4755296460,18586968840,
%U 72723903780,284804791230,1116315593640,4378929921210,17189573707956
%N Total number of branches of length k (k>=1) in all ordered trees with n+k edges (it is independent of k).
%H G. C. Greubel, <a href="/A073663/b073663.txt">Table of n, a(n) for n = 0..1000</a>
%H J. Riordan, <a href="http://dx.doi.org/10.1016/S0097-3165(75)80010-0">Enumeration of plane trees by branches and endpoints</a>, J. Comb. Theory (A) 19, 1975, 214-222.
%F a(n) = binomial(2n+2, n) - 2*binomial(2n, n-1) + binomial(2n-2, n-2) (n > 0).
%F a(n) = 3*(3*n^3 + 2*n^2 + n - 2)*binomial(2*n, n)/(2*(n+1)*(n+2)*(2*n-1)) (n > 0).
%F G.f.: (1-z)^2*C^2/sqrt(1-4z), where C = (1-sqrt(1-4z))/(2z) is the Catalan function.
%F D-finite with recurrence (n+2)*a(n) +(-7*n-5)*a(n-1) +2*(7*n-8)*a(n-2) +4*(-2*n+7)*a(n-3)=0. - _R. J. Mathar_, Jul 26 2022
%e a(2)=8 because for n=2 and k=1 (for example), the five ordered trees with n+k=3 edges have altogether 0+3+1+1+3=8 branches of length 1.
%t Table[If[n==0, 1, 3*(3*n^3+2*n^2+n-2)*CatalanNumber[n]/(2*(n+2)*(2*n - 1))], {n,0,30}] (* _G. C. Greubel_, Jul 22 2019 *)
%o (PARI) vector(30, n, n--; if(n==0, 1, 3*(3*n^3+2*n^2+n-2)*binomial(2*n, n)/(2*(n+1)*(n+2)*(2*n-1)))) \\ _G. C. Greubel_, Jul 22 2019
%o (Magma) [1] cat [3*(3*n^3+2*n^2+n-2)*Catalan(n)/(2*(n+2)*(2*n-1)): n in [1..30]]; // _G. C. Greubel_, Jul 22 2019
%o (Sage) [1]+[3*(3*n^3+2*n^2+n-2)*catalan_number(n)/(2*(n+2)*(2*n-1)) for n in (1..30)] # _G. C. Greubel_, Jul 22 2019
%o (GAP) Concatenation([1], List([1..30], n-> 3*(3*n^3+2*n^2+n-2)* Binomial(2*n, n)/(2*(n+1)*(n+2)*(2*n-1)))); # _G. C. Greubel_, Jul 22 2019
%Y First differences of A076540.
%K nonn
%O 0,2
%A _Emeric Deutsch_, Sep 01 2002