

A073602


a(n) is the smallest prime different from a(k) for k < n such that sum(a(j), j=1..n) is a multiple of the nth prime.


0



2, 7, 11, 29, 17, 103, 137, 131, 23, 149, 73, 317, 67, 181, 163, 127, 233, 487, 557, 97, 593, 367, 113, 199, 1249, 2143, 47, 617, 263, 877, 19, 1213, 349, 577, 383, 311, 643, 3, 1151, 331, 677, 2521, 397, 1153, 1381, 1601, 277, 157, 631, 433, 179, 373, 443
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: Every prime belongs to this sequence.


LINKS

Table of n, a(n) for n=1..53.


EXAMPLE

a(5) = 17 since 2 + 7 + 11 + 29 + 17 = 66 is a multiple of 11, the fifth prime. For the smaller primes 3, 5, 13 the corresponding sums 52, 54, 62 are not multiples of 11.


MATHEMATICA

t = {2}; Do[p = Prime[n]; i = 2; While[! Divisible[Total[t] + (y = Prime[i]), p]  MemberQ[t, y], i++]; AppendTo[t, y], {n, 2, 53}]; t (* Jayanta Basu, Jul 02 2013 *)


PROG

(PARI) vsearch(n, v)=local(j, s); j=1; s=matsize(v)[2]; while(j<=s&&n!=v[j], j++); j<=s {m=54; v=[]; n=1; while(n<=m, p=2; while(vsearch(p, v)((sum(j=1, matsize(v)[2], v[j])+p)%prime(n))>0, p=nextprime(p+1)); print1(p, ", "); v=concat(v, p); n++)}


CROSSREFS

Sequence in context: A024857 A024481 A024591 * A057025 A055469 A228076
Adjacent sequences: A073599 A073600 A073601 * A073603 A073604 A073605


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Aug 04 2002


EXTENSIONS

Edited and extended by Klaus Brockhaus, Aug 10 2002


STATUS

approved



