login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073602 a(n) is the smallest prime different from a(k) for k < n such that sum(a(j), j=1..n) is a multiple of the n-th prime. 0
2, 7, 11, 29, 17, 103, 137, 131, 23, 149, 73, 317, 67, 181, 163, 127, 233, 487, 557, 97, 593, 367, 113, 199, 1249, 2143, 47, 617, 263, 877, 19, 1213, 349, 577, 383, 311, 643, 3, 1151, 331, 677, 2521, 397, 1153, 1381, 1601, 277, 157, 631, 433, 179, 373, 443 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: Every prime belongs to this sequence.

LINKS

Table of n, a(n) for n=1..53.

EXAMPLE

a(5) = 17 since 2 + 7 + 11 + 29 + 17 = 66 is a multiple of 11, the fifth prime. For the smaller primes 3, 5, 13 the corresponding sums 52, 54, 62 are not multiples of 11.

MATHEMATICA

t = {2}; Do[p = Prime[n]; i = 2; While[! Divisible[Total[t] + (y = Prime[i]), p] || MemberQ[t, y], i++]; AppendTo[t, y], {n, 2, 53}]; t (* Jayanta Basu, Jul 02 2013 *)

PROG

(PARI) vsearch(n, v)=local(j, s); j=1; s=matsize(v)[2]; while(j<=s&&n!=v[j], j++); j<=s {m=54; v=[]; n=1; while(n<=m, p=2; while(vsearch(p, v)||((sum(j=1, matsize(v)[2], v[j])+p)%prime(n))>0, p=nextprime(p+1)); print1(p, ", "); v=concat(v, p); n++)}

CROSSREFS

Sequence in context: A024857 A024481 A024591 * A057025 A055469 A228076

Adjacent sequences:  A073599 A073600 A073601 * A073603 A073604 A073605

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Aug 04 2002

EXTENSIONS

Edited and extended by Klaus Brockhaus, Aug 10 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 13:48 EDT 2014. Contains 240983 sequences.