login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Euler transform of negative integers.
35

%I #39 Nov 11 2020 08:28:16

%S 1,-1,-2,-1,0,4,4,7,3,-2,-9,-17,-25,-24,-13,-1,32,61,97,111,112,74,8,

%T -108,-243,-392,-512,-569,-542,-358,-33,473,1078,1788,2395,2865,2955,

%U 2569,1496,-245,-2751,-5783,-9121,-12299,-14739,-15806,-14719,-10930,-3813,6593,20284,36139,53081,68620,80539

%N Euler transform of negative integers.

%C 1/A(x) is g.f. for A000219.

%H Seiichi Manyama, <a href="/A073592/b073592.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vaclav Kotesovec)

%H E. M. Wright, <a href="http://dx.doi.org/10.1093/qmath/17.1.39">Coefficients of a reciprocal generating function</a>, Quart. J. Math. 17 (1) (1966) 39-43, <a href="http://adsabs.harvard.edu/abs/1966QJMat..17...39W">ADS Abstracts</a>.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: Product_{k>0} (1-x^k)^k.

%F a(n) = -1/n*Sum_{k=1..n} sigma[2](k)*a(n-k).

%F G.f.: exp( Sum_{n>=1} -sigma_2(n)*x^n/n ). - _Seiichi Manyama_, Mar 04 2017

%p a:= proc(n) option remember; `if`(n=0, 1, -add(

%p numtheory[sigma][2](j)*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 12 2015

%t nmax=50; CoefficientList[Series[Exp[Sum[-x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Mar 02 2015 *)

%t a[n_]:= a[n] = -1/n*Sum[DivisorSigma[2,k]*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* _Vaclav Kotesovec_, Mar 02 2015 *)

%o (SageMath) # uses[EulerTransform from A166861]

%o b = EulerTransform(lambda n: -n)

%o print([b(n) for n in range(55)]) # _Peter Luschny_, Nov 11 2020

%Y Column k=1 of A283272.

%Y Cf. A000219, A001157, A001478, A026007, A156616, A255528.

%K sign

%O 0,3

%A _Vladeta Jovovic_, Aug 28 2002