Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 24 2023 10:08:24
%S 2,3,6,17,66,327,1958,13701,109602,986411,9864102,108505113,
%T 1302061346,16926797487,236975164806,3554627472077,56874039553218,
%U 966858672404691,17403456103284422,330665665962404001,6613313319248080002
%N a(n) = A000522(n) + 1.
%C a(n) is an upper bound on the Ramsey numbers in A003323. - D. G. Rogers, Aug 27 2006
%C There is a nice derivation of the recurrence relation given in the Walker reference.
%H Alois P. Heinz, <a href="/A073591/b073591.txt">Table of n, a(n) for n = 0..200</a> (28 terms from Vincenzo Librandi)
%H R. C. Walker, <a href="http://www.jstor.org/stable/3615645">A graph coloring theorem</a>, Math. Gaz., 60 (1976), 54-57.
%F Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - _R. J. Mathar_, Feb 16 2014
%F a(n) = n*(a(n-1) - 1) + 2. - _Georg Fischer_, Dec 24 2023 [from the Walker reference, p. 55]
%p a:= proc(n) a(n):= `if`(n=0, 2, n*a(n-1)-n+2) end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 17 2014
%t f[n_] := n*(f[n - 1] - 1) + 2;f[0]=2; ff[n_]:=(1/(1+n))(1+E*Gamma[1+n, 1]-E*(n^2)*Gamma[1+n, 1]+E*n*Gamma[2+n, 1]) (Spindler)
%t Table[FunctionExpand[Gamma[n, 1] E] + 1, {n, 2, 29}] (* _Vincenzo Librandi_, Feb 17 2014 *)
%Y Cf. A000522, A001339, A003323, A007526.
%K nonn
%O 0,1
%A _Vladeta Jovovic_, Aug 28 2002