login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1)*2^n + 1 where a(0)=1.
6

%I #32 Mar 23 2024 19:15:29

%S 1,3,13,105,1681,53793,3442753,440672385,112812130561,57759810847233,

%T 59146046307566593,121131102837896382465,496152997224023582576641,

%U 4064485353259201188467843073,66592528027798752271857140908033,2182103958414909514444214793274425345

%N a(n) = a(n-1)*2^n + 1 where a(0)=1.

%C Also, number of nodes in an n-ary tree with increasing fanout as the level increases. - _Dhruv Matani_, Apr 12 2012

%F a(n) = floor(D*2^(n*(n+1)/2)) where D is a constant, D=1.64163256065515386629... = Sum_{k>=0} 1/2^(k(k+1)/2) = A299998. - _Benoit Cloitre_, Sep 01 2002

%t a = 1; Table[a = a*2^n + 1, {n, 14}] (* _Jayanta Basu_, Jul 02 2013 *)

%o (UBASIC)

%o 25 A=1

%o 30 for I=1 to 20

%o 40 A=A*2^I+1

%o 50 print A

%o 60 next

%o 70 end

%Y Cf. A000225 (nodes in a binary tree).

%Y Cf. A006125, A117261, A299998.

%K easy,nonn

%O 0,2

%A _Felice Russo_, Aug 28 2002

%E Added a(0)=1. Added information from duplicate sequence A182104. - _N. J. A. Sloane_, Dec 28 2015