login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A set of 25 consecutive primes that form a 5 X 5 magic square with the (non-minimal) magic constant 1703.
10

%I #15 Oct 30 2018 20:15:33

%S 269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,

%T 373,379,383,389,397,401,409,419

%N A set of 25 consecutive primes that form a 5 X 5 magic square with the (non-minimal) magic constant 1703.

%C The magic constant here is not the smallest possible for a 5 X 5 magic square composed of consecutive primes, this would be A073520(5) = 313 corresponding to primes (13, 17, ..., 113). [Edited by _M. F. Hasler_, Oct 29 2018]

%D Allan W. Johnson, Jr., Journal of Recreational Mathematics, vol. 14:2, 1981-82, pp. 152-153.

%D Clifford A. Pickover, The Zen of Magic Squares, Circles and Stars: An Exhibition of Surprising Structures across Dimensions, Princeton University Press, 2002.

%H Harvey Heinz, <a href="http://www.magic-squares.net/primesqr.htm">Prime Magic Squares</a>

%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>

%e The magic square is

%e [ 281 409 311 419 283 ]

%e [ 359 379 349 347 269 ]

%e [ 313 307 389 293 401 ]

%e [ 397 331 337 271 367 ]

%e [ 353 277 317 373 383 ]

%o (PARI) A073522=MagicPrimes(1703,5) \\ Cf. A073519. - _M. F. Hasler_, Oct 28 2018

%Y Cf. A073519 and A320873 (minimal 3 X 3 magic square of consecutive primes), A073520 (minimal magic sum for n X n square of consecutive primes), A073521 (consecutive primes of a 4 X 4 magic square), A073523 (consecutive primes of a pandiagonal 6 X 6 magic square).

%K nonn,fini,full

%O 1,1

%A _N. J. A. Sloane_, Aug 29 2002

%E Edited by _Max Alekseyev_, Sep 24 2009