login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A possible basis for finite fractal sequences: let u(1) = 1, u(2) = n, u(k) = floor(u(k-1)/2) + floor(u(k-2)/2); then a(n) = lim_{k->infinity} u(k).
2

%I #33 Oct 22 2019 04:20:26

%S 0,0,0,2,2,2,2,4,4,4,4,6,6,8,8,10,10,10,10,12,12,12,12,14,14,14,14,16,

%T 16,18,18,20,20,20,20,22,22,22,22,24,24,24,24,26,26,28,28,30,30,30,30,

%U 32,32,34,34,36,36,36,36,38,38,40,40,42,42,42,42,44,44,44,44,46,46,46

%N A possible basis for finite fractal sequences: let u(1) = 1, u(2) = n, u(k) = floor(u(k-1)/2) + floor(u(k-2)/2); then a(n) = lim_{k->infinity} u(k).

%C The minimum number k(n) of iterations in order to have u(k(n)) = a(n) is asymptotic to log(n)/2. Let m be any fixed positive integer and let Fr(m,n) = 3*Sum_{k = 1..n} a(k) - n^2 + m*n; then Fr(m,n) is a fractal generator function, i.e., there is an integer B(m) such that the graph for Fr(n,m) presents same fractal aspects for 1 <= n <= B(m). B(m) depends on the parity of m. B(2*p+1) = (5/3)*(4^p-1); B(2*p) = (2/3)*(4^p-1). [Formula for Fr(m,n) corrected by _Petros Hadjicostas_, Oct 21 2019 using the PARI program below.]

%H B. Cloitre, <a href="/A073059/a073059_4.jpg">Graph of Fr(n,4) for 1 <= n <= B(4)</a>.

%H B. Cloitre, <a href="/A073059/a073059_6.jpg">Graph of Fr(n,6) for 1 <= n <= B(6)</a>.

%H B. Cloitre, <a href="/A073059/a073059_8.jpg">Graph of Fr(n,8) for 1 <= n <= B(8)</a>.

%H B. Cloitre, <a href="/A073059/a073059_5.jpg">Graph of Fr(n,5) for 1 <= n <= B(5)</a>.

%H B. Cloitre, <a href="/A073059/a073059_7.jpg">Graph of Fr(n,7) for 1 <= n <= B(7)</a>.

%H B. Cloitre, <a href="/A073059/a073059_9.jpg">Graph of Fr(n,9) for 1 <= n <= B(9)</a>.

%F a(n) is asymptotic to 2*n/3.

%o (PARI) for(n=1, taille, u1=1; u2=n; while((u2!=u1)||((u2%2) == 1), u3=u2; u2=floor(u2/2)+floor(u1/2); u1=u3; ); b[n]=u2; ) fr(m, k)=(3*sum(i=1, k, b[i]))-k^2+m*k; bound(m)=if((m%2) == 1, p=(m-1)/2; 5/3*(4^p-1), 2/3*(4^(m/2)-1)); m=5; fractal=vector(bound(m)); for(i=1, bound(m), fractal[i]=fr(m, i); ); Mm=vecmax(fractal) indices=vector(bound(m)); for(i=1, bound(m), indices[i]=i); psplothraw(indices, fractal, 1); \\ To generate graphs

%Y Cf. A073059 and A071992 (curiously A071992 presents the same fractal aspects as Fr(n, m)).

%K nonn

%O 1,4

%A _Benoit Cloitre_ and Boris Gourevitch (boris(AT)pi314.net), Aug 16 2002