Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Oct 10 2024 18:07:58
%S 0,-1,0,1,0,-1,0,1,0,-1,0,1,-1,0,0,0,1,0,-1,0,0,0,1,-1,0,1,0,-1,0,1,
%T -1,0,0,0,1,-1,0,0,0,1,0,-1,0,0,0,1,-1,0,1,0,-1,0,0,0,1,-1,0,1,-1,0,0,
%U 0,1,-1,0,0,0,0,0,1,-1,0,1,0,-1,0,1,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,-1,0,0,0,1,0,-1,0,0,0,0,0,0,0,1,0,-1,0
%N Second differences of A002808, the sequence of composites.
%H Reinhard Zumkeller, <a href="/A073445/b073445.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = c(n+2)-2*c(n+1)+c(n), where c(n)=A002808(n).
%F a(n) = A073783(n+1) - A073783(n). - _Reinhard Zumkeller_, Jan 10 2013
%e From _Gus Wiseman_, Oct 10 2024: (Start)
%e The composite numbers (A002808) are:
%e 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
%e with first differences (A073783):
%e 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
%e with first differences (A073445):
%e 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, ...
%e (End)
%t c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] Table[(c[w+2]-2*c[w+1])+c[w]), {w, 1, 1000}]
%t (* second program *)
%t Differences[Select[Range[100],CompositeQ],2] (* _Gus Wiseman_, Oct 08 2024 *)
%o (Haskell)
%o a073445 n = a073445_list !! (n-1)
%o a073445_list = zipWith (-) (tail a073783_list) a073783_list
%o -- _Reinhard Zumkeller_, Jan 10 2013
%o (Python)
%o from sympy import primepi
%o def A073445(n):
%o def iterfun(f,n=0):
%o m, k = n, f(n)
%o while m != k: m, k = k, f(k)
%o return m
%o return (a:=iterfun(f:=lambda x:n+primepi(x)+1,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # _Chai Wah Wu_, Oct 03 2024
%Y Also first differences of A054546.
%Y For first differences we had A073783 (ones A375929), run-lengths A376680.
%Y Positions of zeros are A376602.
%Y Positions of nonzeros are A376603.
%Y Positions of ones are A376651, negative-ones A376652.
%Y A002808 lists the composite numbers.
%Y A064113 lists positions of adjacent equal prime gaps.
%Y A333254 gives run-lengths of differences between consecutive primes.
%Y Other second differences: A036263 (prime), A376590 (squarefree), A376596 (prime-power), A376604 (Kolakoski).
%Y Cf. A076259, A174965, A251092, A376562, A376593, A376599.
%K sign,easy
%O 1,1
%A _Labos Elemer_, Aug 01 2002