Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 30 2022 01:45:37
%S 1,4,18,60,195,576,1644,4488,11925,30860,78278,195012,478599,1159080,
%T 2774880,6575280,15439065,35955540,83118970,190862860,435601611,
%U 988620624,2232236628,5016441240,11224087965
%N Third convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
%H G. C. Greubel, <a href="/A073373/b073373.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (4,2,-20,-1,40,8,-32,-16).
%F a(n) = Sum_{k=0..n} b(k) * c(n-k), with b(k) = A001045(k+1) and c(k) = A073372(k).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, 3) * binomial(n-k, k) * 2^k.
%F a(n) = ((350+177*n+21*n^2)*(n+1)*U(n+1) + 2*(277+132*n+15*n^2)*(n+2)*U(n))/ (2*9^3) with U(n) = A001045(n+1), n>=0.
%F G.f.: 1/(1-(1+2*x)*x)^4 = 1/ ( (1+x)^4*(1-2*x)^4 ).
%F E.g.f.: (1/4374)*(32*(113 + 366*x + 234*x^2 + 36*x^3)*exp(2*x) - (-758 + 690*x - 153*x^2 + 9*x^3)*exp(-x)). - _G. C. Greubel_, Sep 29 2022
%t Table[(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)), {n,0,40}] (* _G. C. Greubel_, Sep 29 2022 *)
%o (Magma) [(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)): n in [0..40]]; // _G. C. Greubel_, Sep 29 2022
%o (SageMath)
%o def A073373(n): return (1/4374)*(2^(n+4)*(226+267*n+90*n^2+9*n^3) +(-1)^n*(758 +555*n+126*n^2+9*n^3))
%o [A073373(n) for n in range(40)] # _G. C. Greubel_, Sep 29 2022
%Y Fourth (m=3) column of triangle A073370.
%Y Cf. A001045, A073372.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Aug 02 2002