Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 31 2023 10:04:19
%S 3,2,3,8,1,1,3,2,2,3,2,2,1,1,7,4,4,2,4,3,1,1,2,4,2,8,4,3,1,1,6,4,3,2,
%T 5,4,1,1,5,2,2,3,2,2,1,1,4,5,6,2,3,5,1,1,2,3,2,4,3,6,1,1,7,8,3,2,4,5,
%U 1,1,3,2,2,3,2,2,1,1,7,3,4,2,7,6,1,1,2,5,2,5,5,3,1,1,3,3,3,2,10,3,1,1,4,2,2
%N Number of steps to reach an integer starting with (2n+1)/4 and iterating the map x -> x*ceiling(x).
%C We conjecture that an integer is always reached.
%C Is S(n) = Sum_{k=2..n} a(k) asymptotic to 3*n? S(n) = 3n for n = 69, 127, 166, 169, 189, 197, 327, 328, 360, 389, 404, 405, 419, 428, 497, 519, 520, 540, 541, 544, 547, 652, 668, 669, 676, 682, 683...
%C The sign of 3n-S(n) seems to change often: 3n-S(n) = 3, 4, 4, -1, 1, 3, 3, 4, 5, 5, 6, 7, 9, 11, 7, 6, 5, 6, 5, 5, 7, 9, 10, 9, 10, 5, 4, 4, 6, 8, 5, 4, 4, 5, 3, 2, 4, 6, 4, 5, 6, 6, 7, 8, 10, 12, 11, 9, 6, 7, 7, 5, 7, 9, 10, 10, 11, 10, 10, 7, 9, 11, 7, 2, 2, 3, 2, 0, 2, 4, 4, 5, 6, 6, 7, 8, 10, 12, 8, 8, 7, 8, 4, 1, 3, 5, 6, 4, 5, 3, 1, 1, 3, 5, 5, 5, 5, 6, -1, ... Is 3n-S(n) bounded? - _Benoit Cloitre_, Sep 05 2002
%H Robert Israel, <a href="/A073341/b073341.txt">Table of n, a(n) for n = 2..10000</a>
%H J. C. Lagarias and N. J. A. Sloane, Approximate squaring (<a href="http://neilsloane.com/doc/apsq.pdf">pdf</a>, <a href="http://neilsloane.com/doc/apsq.ps">ps</a>), Experimental Math., 13 (2004), 113-128.
%p g := proc(x) local M,t1,t2,t3; M := 4^100; t1 := ceil(x) mod M; t2 := x*t1; t3 := numer(t2) mod M; t3/denom(t2); end;
%p a := []; for n from 2 to 150 do t1 := (2*n+1)/4; for i from 1 to 100 do t1 := g(t1); if type(t1,`integer`) then break; fi; od: a := [op(a),i]; od: a;
%t a[n_] := Length @ NestWhileList[# Ceiling[#]&, (2n+1)/4, !IntegerQ[#]&] - 1;
%t Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Jan 31 2023 *)
%o (PARI) a(n)=if(n<1,0,s=n/2+1/4; c=0; while(frac(s)>0,s=s*ceil(s); c++); c) \\ _Benoit Cloitre_, Sep 05 2002
%Y Cf. A073524, A074735, A085785, A085817, A085833.
%K nonn
%O 2,1
%A _N. J. A. Sloane_ and J. C. Lagarias, Sep 04 2002