login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073307
Numbers k such that S(k)=d(k), where S(k) is the Kempner function (A002034) and d(k) is the number of divisors of k (A000005).
2
1, 2, 8, 18, 45, 128, 486, 1215, 1701, 2673, 3750, 5000, 8750, 13122, 13125, 13750, 16250, 16875, 20625, 21250, 23750, 24375, 31875, 32768, 32805, 35625, 45927, 48125, 56875, 72171, 74375, 83125, 85293, 89375, 111537, 116875, 130625, 138125, 154375, 201875
OFFSET
1,2
MATHEMATICA
Smarandache[1] := 1; Smarandache[n_] := Max[Smarandache @@@ FactorInteger[n]]; Smarandache[p_, 1] := p; Smarandache[p_, alpha_] := Smarandache[p, alpha] = Module[{a, k, r, i, nu, k0 = alpha(p - 1)}, i = nu = Floor[Log[p, 1 + k0]]; a[1] = 1; a[n_] := (p^n - 1)/(p - 1); k[nu] = Quotient[alpha, a[nu]]; r[nu] = alpha - k[nu]a[nu]; While[r[i] > 0, k[i - 1] = Quotient[r[i], a[i - 1]]; r[i - 1] = r[i] - k[i - 1]a[i - 1]; i-- ]; k0 + Plus @@ k /@ Range[i, nu]]; Do[If[Smarandache[n] == DivisorSigma[0, n], Print[n]], {n, 1, 100000}] (* Ryan Propper, Jul 12 2005 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 22 2002
EXTENSIONS
More terms from Ryan Propper, Jul 12 2005
More terms from Amiram Eldar, Feb 18 2019
STATUS
approved