login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000040(n+1) - A073271(n).
3

%I #14 Sep 08 2022 08:45:06

%S 0,1,0,3,-1,3,-1,0,5,-3,3,3,-1,-1,1,5,-3,3,3,-3,3,-1,-1,5,3,-1,3,-1,

%T -9,11,-1,5,-7,9,-3,1,3,-1,1,5,-7,9,-1,3,-9,1,9,3,-1,-1,5,-7,5,1,1,5,

%U -3,3,3,-7,-3,11,3,-1,-9,9,-3,9,-1,-1,-1,3,1,3,-1,-1,5,-3,-1,9,-7,9,-3,3,-1

%N A000040(n+1) - A073271(n).

%C Observation/conjecture: a(n)=0 iff A073271(n) in {3, 7, 23}.

%H Charles R Greathouse IV, <a href="/A073272/b073272.txt">Table of n, a(n) for n = 1..10000</a>

%e For n=11, A000040(11)*A000040(13)/A000040(12) = 31*41/37 = 1271/37 = (34*37+13)/37, therefore A073271(11)=34; a(11) = A000040(12)-A073271(11) = 37-34 = +3.

%t Table[Prime[n+1] - Floor[Prime[n] Prime[n+2] / Prime[n+1]], {n, 80}] (* _Vincenzo Librandi_, May 31 2015 *)

%o (Magma) [NthPrime(n+1)-Floor(NthPrime(n)*NthPrime(n+2) / NthPrime(n+1)): n in [1..80]]; // _Vincenzo Librandi_, May 31 2015

%o (PARI) a(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1)); q - p*r\q \\ _Charles R Greathouse IV_, Jun 02 2015

%Y Cf. A073274.

%K sign

%O 1,4

%A _Reinhard Zumkeller_, Jul 22 2002