login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of replicable function number "48g".
7

%I #56 Sep 07 2023 12:50:18

%S 1,2,1,2,4,4,5,6,9,12,13,16,21,26,29,36,46,54,62,74,90,106,122,142,

%T 171,200,227,264,311,358,408,470,545,626,709,810,933,1062,1198,1362,

%U 1555,1760,1980,2238,2536,2858,3205,3602,4063,4560,5092,5704,6400,7150,7966

%N Coefficients of replicable function number "48g".

%C Old name was: McKay-Thompson series of class 48g for the Monster group.

%C Number of partitions of n into distinct odd parts of two kinds. [_Joerg Arndt_, Jul 30 2011]

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Combinatorial interpretation of sequence: [ X1, X2 ] = 2 strictly increasing sequences (possibly null) of odd positive integers; a(n) = #pairs with sum of entries = n.

%D T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

%H Seiichi Manyama, <a href="/A073252/b073252.txt">Table of n, a(n) for n = 0..1000</a>

%H D. Foata and G.-N. Han, <a href="https://irma.math.unistra.fr/~foata/paper/pub81a.pdf">Jacobi and Watson Identities Combinatorially Revisited</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F G.f.: 1 / (Prod_{k>0} 1 + (-x)^k)^2 = (Prod_{k>0} 1 + x^(2*k - 1))^2.

%F Expansion of q^(1/12) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^2 in powers of q.

%F Expansion of chi(q)^2 = phi(q) / f(-q^2) = f(q) / psi(-q) = (phi(q) / f(q))^2 = (psi(q) / f(-q^4))^2 = (f(-q^2) / psi(-q))^2 = (phi(-q^2) / f(-q))^2 = (f(q) / f(-q^2))^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.

%F Euler transform of period 4 sequence [2, -2, 2, 0, ...].

%F Equals the convolution square of A000700.

%F a(n) = (-1)^n * A022597(n).

%F a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Aug 27 2015

%F G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - _Ilya Gutkovskiy_, Jun 07 2018

%F a(2*n) = A226622(n). a(2*n + 1) = 2 * A226635(n). - _Michael Somos_, Nov 03 2019

%e a(4) = 4: [ (1),(3) ],[ (3),(1) ],[ (),(1,3) ],[ (1,3),() ]

%e G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 9*x^8 + 12*x^9 + ...

%e G.f. = 1/q + 2*q^11 + q^23 + 2*q^35 + 4*q^47 + 4*q^59 + 5*q^71 + 6*q^83 + ...

%t nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 27 2015 *)

%t QP = QPochhammer; s = (QP[q^2]^2 / (QP[q] * QP[q^4]))^2 + O[q]^60; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 14 2015, adapted from PARI *)

%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2, {x, 0, n}]; (* _Michael Somos_, Nov 03 2019 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod( i=1, (1+n)\2, 1 + x^(2*i - 1), 1 + x * O(x^n))^2, n))};

%o (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod( i=1, n, 1 + (-x)^i, 1 + x * O(x^n))^2, n))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) / eta(x^4 + A))^2, n))};

%o (Magma)

%o m:=80;

%o R<x>:=PowerSeriesRing(Integers(), m);

%o Coefficients(R!( ( (&*[1 + x^(2*j+1): j in [0..m+2]]) )^2 )); // _G. C. Greubel_, Sep 07 2023

%o (SageMath)

%o from sage.modular.etaproducts import qexp_eta

%o m=80

%o def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)

%o def A073252_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( (f(x^2)^2/(f(x)*f(x^4)))^2 ).list()

%o A073252_list(m) # _G. C. Greubel_, Sep 07 2023

%Y Cf. A000122, A000700, A010054, A022597, A121373, A226622, A226635.

%K nonn,easy

%O 0,2

%A _Michael Somos_, Jul 22 2002

%E Comments from _Len Smiley_.

%E New name from _Michael Somos_, Nov 03 2019