login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sum of Pi(k) from 1 to 10^n.
5

%I #17 Jul 07 2014 11:32:10

%S 27,1465,92041,6554833,504813055,40947676475,3442465670223,

%T 296935715374179,26108021958592999,2329702677873323273,

%U 210338403560373373799,19172323465486902000641,1761408925012566646647345,162904914369466264400189781

%N Partial sum of Pi(k) from 1 to 10^n.

%H Hiroaki Yamanouchi, <a href="/A073224/b073224.txt">Table of n, a(n) for n = 1..20</a>

%F a(n) = (10^n + 1) * A006880(n) - A046731(n). - _Hiroaki Yamanouchi_, Jul 06 2014

%t s = 0; k = 1; Do[ While <= 10^n, s = s + PrimePi[k]; k++ ]; Print[s], {n, 1, 8}]

%Y Cf. A000720.

%K nonn

%O 1,1

%A _Robert G. Wilson v_, Jul 20 2002

%E a(9)-a(10) from _Donovan Johnson_, Dec 15 2009

%E a(11)-a(12) from _Donovan Johnson_, Mar 19 2011

%E a(13)-a(14) from _Hiroaki Yamanouchi_, Jul 06 2014