%I #27 Jul 28 2021 23:26:46
%S 2,18,34,290,306,578,4914,4930,5202,9826,83522,83538,83810,88434,
%T 167042,1419858,1419874,1420146,1424770,1503378,2839714,24137570,
%U 24137586,24137858,24142482,24221090,25557426,48275138,410338674,410338690,410338962,410343586
%N Sum of two powers of 17.
%H T. D. Noe, <a href="/A073213/b073213.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,m) = 17^n + 17^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
%F Bivariate g.f.: (2 - 18*x)/((1 - x)*(1 - 17*x)*(1 - 17*x*y)). - _J. Douglas Morrison_, Jul 26 2021
%e T(2,0) = 17^2 + 17^0 = 290.
%e Table T(n,m) begins:
%e 2;
%e 18, 34;
%e 290, 306, 578;
%e 4914, 4930, 5202, 9826;
%e 83522, 83538, 83810, 88434, 167042;
%e ...
%t Flatten[Table[Table[17^n + 17^m, {m, 0, n}], {n, 0, 7}]] (* _T. D. Noe_, Jun 18 2013 *)
%t Union[Total/@Tuples[17^Range[0,10],2]] (* _Harvey P. Dale_, Apr 09 2015 *)
%Y Cf. A001026 (powers of 17).
%Y Equals twice A073221.
%Y Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073214 (19), A073215 (23).
%K easy,nonn,tabl
%O 0,1
%A _Jeremy Gardiner_, Jul 20 2002