login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of prime parts in all partitions of n.
10

%I #31 Aug 07 2019 15:50:39

%S 0,2,5,9,19,33,57,87,136,206,311,446,650,914,1284,1762,2432,3276,4433,

%T 5888,7824,10272,13479,17471,22642,29087,37283,47453,60306,76112,

%U 95931,120201,150338,187141,232507,287591,355143,436849,536347,656282,801647,976095

%N Total sum of prime parts in all partitions of n.

%H Alois P. Heinz, <a href="/A073118/b073118.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = Sum_{k=1..n} A008472(k)*A000041(n-k).

%F G.f.: Sum_{i>=1} prime(i)*x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j). - _Ilya Gutkovskiy_, Feb 01 2017

%e From _Omar E. Pol_, Nov 20 2011 (Start):

%e For n = 6 we have:

%e --------------------------------------

%e . Sum of

%e Partitions prime parts

%e --------------------------------------

%e 6 .......................... 0

%e 3 + 3 ...................... 6

%e 4 + 2 ...................... 2

%e 2 + 2 + 2 .................. 6

%e 5 + 1 ...................... 5

%e 3 + 2 + 1 .................. 5

%e 4 + 1 + 1 .................. 0

%e 2 + 2 + 1 + 1 .............. 4

%e 3 + 1 + 1 + 1 .............. 3

%e 2 + 1 + 1 + 1 + 1 .......... 2

%e 1 + 1 + 1 + 1 + 1 + 1 ...... 0

%e --------------------------------------

%e Total ..................... 33

%e So a(6) = 33. (End)

%p b:= proc(n, i) option remember; local h, j, t;

%p if n<0 then [0, 0]

%p elif n=0 then [1, 0]

%p elif i<1 then [0, 0]

%p else h:= [0, 0];

%p for j from 0 to iquo(n, i) do

%p t:= b(n-i*j, i-1);

%p h:= [h[1]+t[1], h[2]+t[2]+`if`(isprime(i), t[1]*i*j, 0)]

%p od; h

%p fi

%p end:

%p a:= n-> b(n, n)[2]:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Nov 20 2011

%t f[n_] := Apply[Plus, Select[ Flatten[ IntegerPartitions[n]], PrimeQ[ # ] & ]]; Table[ f[n], {n, 1, 41} ]

%t a[n_] := Sum[Total[FactorInteger[k][[All, 1]]]*PartitionsP[n-k], {k, 1, n}] - PartitionsP[n-1]; Array[a, 50] (* _Jean-François Alcover_, Dec 27 2015 *)

%o (PARI) a(n)={sum(k=1, n, vecsum(factor(k)[, 1])*numbpart(n-k))} \\ _Andrew Howroyd_, Dec 28 2017

%Y Cf. A037032, A194545, A309561.

%K easy,nonn

%O 1,2

%A _Vladeta Jovovic_, Aug 24 2002

%E Edited and extended by _Robert G. Wilson v_, Aug 26 2002