Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #90 Nov 20 2024 09:47:21
%S 3,11,17,73,101,137,257,353,449,641,1409,10753,15361,19841,65537,
%T 69857,453377,976193,1514497,5767169,5882353,6187457,8253953,8257537,
%U 70254593,167772161,175636481,302078977,458924033,639631361,1265011073
%N Primes p for which the period of 1/p is a power of 2.
%C All Fermat primes > 5 (A019434) are in the sequence, since it can be shown that the period of 1/(2^(2^n)+1) is 2^(2^n) whenever 2^(2^n)+1 is prime. - _Benoit Cloitre_, Jun 13 2007
%C Take all the terms from row 2^k of triangle in A046107 for k >= 0 and sort to arrive at this sequence. - _Ray Chandler_, Nov 04 2011
%C Additional terms, but not necessarily the next in sequence: 13462517317633 has period 1048576 = 2^20; 46179488366593 has period 2199023255552 = 2^41; 101702694862849 has period 8388608 = 2^23; 171523813933057 has period 4398046511104 = 2^42; 505775348776961 has period 2199023255552 = 2^41; 834427406578561 has period 64 = 2^6 - _Ray Chandler_, Nov 09 2011
%C Furthermore (excluding the initial term 3) this sequence is also the ascending sequence of primes dividing 10^(2^k)+1 for some nonnegative integer k. For a prime dividing 10^(2^k)+1, the period of 1/p is 2^(k+1). Thus for the prime p = 558711876337536212257947750090161313464308422534640474631571587847325442162307811\
%C 65223702155223678309562822667655169, a factor of 10^(2^7)+1, the period of 1/p is only 2^8. This large prime then also belongs to the sequence. - _Christopher J. Smyth_, Mar 13 2014
%C For any m, every term that is not a factor of 10^(2^k)-1 for some k < m is congruent to 1 (mod 2^m). Thus all terms except 3, 11, 17, 73, 101, 137, 353, 449, 69857, 976193, 5882353, 6187457 are congruent to 1 (mod 128). - _Robert Israel_, Jun 17 2016
%C Additional terms listed earlier confirmed as next terms in sequence. - _Arkadiusz Wesolowski_, Jun 17 2016
%H Arkadiusz Wesolowski, <a href="/A072982/b072982.txt">Table of n, a(n) for n = 1..45</a> (first 33 terms from Ray Chandler, to 36 terms from Robert G. Wilson v, to 39 terms from Ray Chandler)
%H Ray Chandler, <a href="/A072982/a072982_1.txt">Known Terms of A072982</a>
%H Wilfrid Keller, <a href="http://www.prothsearch.com/GFN10.html">Prime factors of generalized Fermat numbers Fm(10) and complete factoring status</a>
%H <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n</a>
%e 15361 has a period of 256 = 2^8, hence 15361 is in the sequence.
%p filter:= proc(p) local k;
%p if not isprime(p) then return false fi;
%p k:=igcd(p-1,2^ilog2(p));
%p evalb(10 &^ k mod p = 1)
%p end proc:
%p r:= select(`<=`,`union`(seq(numtheory:-factorset(10^(2^k)-1),k=1..6)),10^9):
%p b:= select(filter, {seq(i,i=129..10^9,128)}):
%p sort(convert(r union b, list)); # _Robert Israel_, Jun 17 2016
%t Do[ If[ IntegerQ[ Log[2, Length[ RealDigits[ 1/Prime[n]] [[1, 1]]]]], Print[ Prime[n]]], {n, 1, 47500}] (* _Robert G. Wilson v_, May 09 2007 *)
%t pmax = 10^10; p = 1; While[p < pmax,p = NextPrime[p];If[ IntegerQ[Log[2, MultiplicativeOrder[10, p] ] ], Print[ p];];]; (* _Ray Chandler_, May 14 2007 *)
%o (PARI) select( {is_A072982(p)=if(p>5, 1<<exponent(p=znorder(Mod(10, p))),3)==p}, primes(10^5)) \\ is_A...(p) assumes p is prime. - _M. F. Hasler_, Nov 18 2024
%o (Python)
%o from itertools import count, islice
%o from sympy import prime, n_order
%o def A072982_gen(): return (p for p in (prime(n) for n in count(2)) if p != 5 and bin(n_order(10,p))[2:].rstrip('0') == '1')
%o A072982_list = list(islice(A072982_gen(),10)) # _Chai Wah Wu_, Feb 07 2022
%o (Python)
%o from sympy import primerange, n_order
%o A072982_upto = lambda N=1e5: [p for p in primerange(3, N) if p != 5 and n_order(10, p).bit_count() == 1] # or (...) to get a generator. - _M. F. Hasler_, Nov 19 2024
%Y Cf. A002371, A007138, A046107, A054471.
%Y Cf. A197224 (power of 2 which is the period of the decimal 1/a(n)).
%K nonn,base
%O 1,1
%A _Benoit Cloitre_, Jul 26 2002
%E Edited by _Robert G. Wilson v_, Aug 20 2002
%E a(18) from _Ray Chandler_, May 02 2007
%E a(19) from _Robert G. Wilson v_, May 09 2007
%E a(20)-a(32) from _Ray Chandler_, May 14 2007
%E Deleted an unsatisfactory PARI program. - _N. J. A. Sloane_, Nov 19 2024