login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Urban numbers: without 'r' or 'u'.
6

%I #14 Aug 19 2022 13:52:34

%S 1,2,5,6,7,8,9,10,11,12,15,16,17,18,19,20,21,22,25,26,27,28,29,50,51,

%T 52,55,56,57,58,59,60,61,62,65,66,67,68,69,70,71,72,75,76,77,78,79,80,

%U 81,82,85,86,87,88,89,90,91,92,95,96,97,98,99,1000000,1000001,1000002

%N Urban numbers: without 'r' or 'u'.

%D M. J. Halm, Sequences (Re)discovered, Mpossibilities 81 (Aug. 2002).

%H Michael S. Branicky, <a href="/A072957/b072957.txt">Table of n, a(n) for n = 1..10000</a>

%o (PARI) is(n)=!setintersect(Set(Vec(English(n))),["r","u"]) \\ See A052360 for English(). - _M. F. Hasler_, Apr 01 2019

%o /* Alternate code, not using English(): (valid for 1 <= n < one trillion, which should be forbidden due to the 'r' but returns 1) */

%o is(n)={setintersect( Set(digits(n)), [3,4]) && return; !while(n=divrem(n,10^6), n[2]<100||return; n=n[1])} \\ _M. F. Hasler_, Apr 01 2019

%o (Python)

%o from num2words import num2words

%o from itertools import islice, product

%o def ok(n): return set(num2words(n)) & {"r", "u"} == set()

%o def agen(): # generator of terms < 10**304

%o base, pows = [k for k in range(1, 1000) if ok(k)], [1]

%o yield from ([0] if ok(0) else []) + base

%o for e in range(3, 304, 3):

%o if set(num2words(10**e)[4:]) & {"r", "u"} == set():

%o pows = [10**e] + pows

%o for t in product([0] + base, repeat=len(pows)):

%o if t[0] == 0: continue

%o yield sum(t[i]*pows[i] for i in range(len(t)))

%o print(list(islice(agen(), 66))) # _Michael S. Branicky_, Aug 19 2022

%Y Cf. A006933 (eban numbers: without 'e'), A008521 (without 'o'), A008523 (without 't'), A008537 (without 'n'), A089590 (without 'u'), A072956 (turban numbers: without r, t or u), A089589 (without 'i').

%K easy,nonn,word

%O 1,2

%A _Michael Joseph Halm_, Aug 13 2002

%E Missing term 52 inserted by _Michael S. Branicky_, Aug 19 2022