login
A072908
Decimal expansion of the solution of equation log(2)-X*2^(-r)-exp(-X*r/(2^r-1)) = 0 for r = 4 . Solution is 9.96955802...
1
9, 9, 6, 9, 5, 5, 8, 0, 2, 8, 8, 7, 7, 7, 2, 6, 8, 3, 7, 9, 3, 4, 6, 8, 8, 0, 9, 2, 9, 2, 4, 2, 2, 1, 3, 0, 5, 2, 2, 7, 3, 7, 5, 1, 3, 8, 9, 8, 5, 3, 0, 2, 3, 5, 0, 7, 5, 5, 5, 6, 4, 8, 0, 2, 8, 4, 7, 6, 9, 6, 4, 2, 2, 5, 7, 8, 1, 1, 4, 9, 1, 7, 0, 2, 9, 3, 5, 2, 2, 5, 3, 4, 5, 1, 2, 4, 0, 5, 0, 6, 6, 1, 2, 9, 6
OFFSET
1,1
COMMENTS
This constant was conjectured to be the exact value for the 4-clause threshold in satisfiability Problem ( Olivier Dubois 1993).
LINKS
O. Dubois, J. Carlier, Probabilistic approach to the satisfiability Problem, Theoretical Computer Science, 81, 1991, pp. 65-75.
MATHEMATICA
16*Log[2] + 15/4*ProductLog[-2*2^(11/15)/15] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 04 2013 *)
PROG
(PARI) r=4; solve(X=9, 10, log(2)-X*2^(-r)-exp(-X*r/(2^r-1)))
CROSSREFS
Cf. A072907.
Sequence in context: A335011 A157245 A334846 * A217695 A197390 A298520
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, Aug 10 2002
STATUS
approved