login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least k > n such that k*n is a square.
16

%I #56 Feb 17 2024 04:03:38

%S 4,8,12,9,20,24,28,18,16,40,44,27,52,56,60,25,68,32,76,45,84,88,92,54,

%T 36,104,48,63,116,120,124,50,132,136,140,49,148,152,156,90,164,168,

%U 172,99,80,184,188,75,64,72,204,117,212,96,220,126,228,232,236,135,244,248

%N a(n) is the least k > n such that k*n is a square.

%C From _Peter Kagey_, Jun 22 2015: (Start)

%C a(n) is a bijection from the positive integers to A013929 (numbers that are not squarefree). Proof:

%C (1) Injection: Suppose that b<c and a(b) == a(c). By definition and assumption, b < c < a(c) = a(b). Because a(c) = a(b), b, c, a(b), and a(c) must all have the same squarefree part, thus b*c must be a perfect square. However c < a(b), so a(b) must not be the minimal solution. This is a contradiction. If b<c, then a(b) != a(c) so the function is an injection.

%C (2) Surjection: Given some number k in A013929, a(A007913(k)*(A000188(k)-1)^2.) = k (End)

%H Peter Kagey, <a href="/A072905/b072905.txt">Table of n, a(n) for n = 1..5000</a>

%F a(n) = n + A067722(n). - _Peter Kagey_, Feb 05 2015

%F a(n) = A007913(n)*(A000188(n)+1)^2. - _Peter Kagey_, Feb 06 2015

%F Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + 2*zeta(3)/zeta(2) + Pi^2/15 = 3.11949956554216757204... . - _Amiram Eldar_, Feb 17 2024

%e 12 is the smallest integer > 3 such that 3*12 = 6^2 is a perfect square, hence a(3) = 12.

%p f:= proc(n) local F,f,x,y;

%p F:= ifactors(n)[2];

%p x:= mul(`if`(f[2]::odd,f[1],1),f=F);

%p y:= mul(f[1]^floor(f[2]/2),f=F);

%p x*(y+1)^2

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Jun 23 2015

%t a[n_] := For[k = n+1, True, k++, If[IntegerQ[Sqrt[k*n]], Return[k]]]; Array[a, 100] (* _Jean-François Alcover_, Jan 26 2018 *)

%o (PARI) a(n)=if(n<0,0,s=n+1; while(issquare(s*n)==0,s++); s)

%o (PARI) a(n)=my(c=core(n)); (sqrtint(n/c)+1)^2*c \\ _Charles R Greathouse IV_, Jun 23 2015

%o (Haskell)

%o a072905 n = head [k | k <- [n + 1 ..], a010052 (k * n) == 1]

%o -- _Reinhard Zumkeller_, Feb 07 2015

%o (Ruby)

%o def a(n)

%o k = Math.sqrt(n).to_i

%o k -= 1 until n % k**2 == 0

%o n + 2*n/k + n/(k**2)

%o end # _Peter Kagey_, Jul 27 2015

%Y Cf. A000188, A007913, A010052, A067722.

%Y Cf. A182448, A253905.

%K easy,nonn

%O 1,1

%A _Benoit Cloitre_, Aug 10 2002