%I #8 Dec 06 2014 18:00:08
%S -2,-14,70,910,-7280,-138320,1521520,38038000,-532532000
%N Sum of the coefficients of the Schur function expansion of the square of the Vandermonde determinant in n variables.
%C The expansion is combinatorially explosive. The original output and further details are available from my website (see Links).
%D T. Scharf, J.-Y. Thibon and B. G. Wybourne, Powers of the Vandermonde determinant ... J.Phys.A:Mat.Gen. (27) 4211 (1994)
%H B. G. Wybourne, <a href="http://www.fizyka.umk.pl/~bgw/vanex.html">Expansion of the Squares of the Vandermonde Determinant</a>
%F I conjecture that a(n) = prod_{x=0..floor(n/2)} (-3x+1) * prod_{x=0..floor((n-1)/2)} (6x+1).
%e a(3) = -14 because V^2(x1,x2,x3) = {42} - 3{411} - 3{33} + 6{321} - 15{222}.
%o The expansions were evaluated using the program SCHUR.
%K hard,sign
%O 2,1
%A Brian G Wybourne (bgw(AT)phys.uni.torun.pl), Jul 29 2002