|
|
A072859
|
|
Primes p for which the period length of 1/p is prime.
|
|
8
|
|
|
11, 37, 41, 53, 79, 83, 107, 173, 227, 239, 271, 317, 347, 359, 467, 479, 563, 587, 643, 719, 733, 773, 797, 839, 907, 1031, 1187, 1231, 1283, 1307, 1319, 1439, 1493, 1523, 1627, 1637, 1879, 1907, 1987, 2027, 2039, 2467, 2477, 2677, 2791, 2837, 2879, 2963
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes p such that the multiplicative order of 10 (mod p) is prime. - Joerg Arndt, Oct 26 2014
|
|
LINKS
|
|
|
EXAMPLE
|
1/37== 0.027027...with period length = 3, hence 37 is in the sequence.
|
|
MATHEMATICA
|
Select[Prime[Range[500]], PrimeQ[MultiplicativeOrder[10, #]]&] (* Ray Chandler, Oct 31 2011 *)
|
|
PROG
|
(PARI) a(n)=if(n<4, n==2, znorder(Mod(10, prime(n)))) ? for(n=1, 100, if(isprime(a(n))==1, print1(prime(n), ", ")))
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|