login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write n as the arithmetic mean of a set of distinct primes.
10

%I #31 Feb 25 2023 06:04:10

%S 0,1,1,2,3,4,5,10,9,18,19,40,37,80,79,188,163,385,355,855,738,1815,

%T 1555,3796,3237,8281,6682,17207,13967,35370,28575,74385,58831,153816,

%U 119948,312288,244499,643535,495011,1309267,997381,2629257,2004295,5334522

%N Number of ways to write n as the arithmetic mean of a set of distinct primes.

%C a(n) = #{ m | A072700(m)=n }.

%C a(n) < A066571(n).

%H Alois P. Heinz, <a href="/A072701/b072701.txt">Table of n, a(n) for n = 1..100</a>

%H Reinhard Zumkeller, <a href="/A072701/a072701.txt">Representing integers as arithmetic means of primes</a>

%e a(6) = 4, as 6 = (5+7)/2 = (2+3+13)/3 = (2+5+11)/3 = (2+3+5+7+13)/5;

%e a(7) = 5, as 7 = 7/1 = (3+11)/2 = (3+5+13)/3 = (3+7+11)/3 = (3+5+7+13)/4.

%p sp:= proc(i) option remember; `if`(i=1, 2, sp(i-1) +ithprime(i)) end: b:= proc(n,i,t) if n<0 then 0 elif n=0 then `if`(t=0, 1, 0) elif i=2 then `if`(n=2 and t=1, 1, 0) else b(n,i,t):= b(n, prevprime(i), t) +b(n-i, prevprime(i), t-1) fi end: a:= proc(n) local s, k; s:= `if`(isprime(n), 1, 0); for k from 2 while sp(k)/k<=n do s:= s +b(k*n, nextprime(k*n -sp(k-1)-1), k) od; s end: seq(a(n), n=1..28); # _Alois P. Heinz_, Jul 20 2009

%t Needs["DiscreteMath`Combinatorica`"]; a = Drop[ Sort[ Subsets[ Table[ Prime[i], {i, 1, 20}]]], 1]; b = {}; Do[c = Apply[Plus, a[[n]]]/Length[a[[n]]]; If[ IntegerQ[c], b = Append[b, c]], {n, 1, 2^20 - 1}]; b = Sort[b]; Table[ Count[b, n], {n, 1, 20}]

%t t = Table[0, {200}]; k = 2; lst = Prime@Range@25; While[k < 2^25+1, slst = Flatten@Subsets[lst, All, {k}]; If[Mod[Plus @@ slst, Length@slst] == 0, t[[(Plus @@ slst)/(Length@slst)]]++ ]; k++ ]; t (* _Robert G. Wilson v_ *)

%t sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]];

%t b[n_, i_, t_] := b[n, i, t] = Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2, If[n == 2 && t == 1, 1, 0], True, b[n, NextPrime[i, -1], t] + b[n - i, NextPrime[i, -1], t - 1]];

%t a[n_] := Module[{s, k}, s = If[PrimeQ[n], 1, 0]; For[k = 2, sp[k]/k <= n, k++, s = s + b[k*n, NextPrime[k*n - sp[k - 1] - 1], k]]; s];

%t Table[a[n], {n, 1, 44}] (* _Jean-François Alcover_, Feb 13 2018, after _Alois P. Heinz_ *)

%o (Haskell)

%o a072701 n = f a000040_list 1 n 0 where

%o f (p:ps) l nl x

%o | y > nl = 0

%o | y < nl = f ps (l + 1) (nl + n) y + f ps l nl x

%o | otherwise = if y `mod` l == 0 then 1 else 0

%o where y = x + p

%o -- _Reinhard Zumkeller_, Feb 13 2013

%Y Cf. A072700, A072697, A072820, A072821.

%Y Cf. A066571, A163974.

%K nonn

%O 1,4

%A _Reinhard Zumkeller_, Jul 04 2002 and Jul 15 2002

%E Corrected by _John W. Layman_, Jul 11 2002

%E More terms from _Alois P. Heinz_, Jul 20 2009