|
|
A072694
|
|
(p(n)#)^p(n), or n-th primorial raised to n-th prime power.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(7) through a(10) have 98, 133, 193 and 285 digits, respectively.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (p(n)#)^p(n), where p(n) is n-th prime and # denotes primorial (A002110).
|
|
EXAMPLE
|
a(3) = 24300000 because (p(3)#)^p(3) = (5*3*2)^5 = 30^5 = 24300000.
|
|
MATHEMATICA
|
With[{nn=6}, First[#]^Last[#]&/@Thread[{Rest[FoldList[Times, 1, Prime[ Range[nn]]]], Prime[Range[nn]]}]] (* Harvey P. Dale, Mar 16 2012 *)
|
|
PROG
|
(PARI) for(n=1, 6, print1((prod(k=1, n, prime(k)))^prime(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|