Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Apr 18 2023 08:30:00
%S 3,20,42,7920,156,57120,342,212520,342014400,930,1673844480,2430480,
%T 1806,4280760,16529385600,32441381280,3660,71852901120,23319240,5256,
%U 200133133200,44102880,418397031360,5827054819622400,97990200,10506,123854640,11772,154529760
%N a(n) = product of numbers from prime(n)+1 up to prime(n+1), where prime(n) is the n-th prime.
%C Originally the offset was -1 and two terms more in front were pre defined in a inscrutable manner (a(-1)=1, a(0) = 2; .....). - _Karl-Heinz Hofmann_, Apr 18 2023
%H Karl-Heinz Hofmann, <a href="/A072472/b072472.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000040(n+1)*A061214(n). - _Karl-Heinz Hofmann_, Apr 18 2023
%e a(1) = 3
%e a(2) = 4 * 5 = 20
%e a(3) = 6 * 7 = 42
%e a(4) = 8 * 9 * 10 * 11 = 7920
%t a[n_] := Product[k, {k, Prime[n] + 1, Prime[n + 1]}]; Table[a[n], {n, 1, 30}]
%o (Python)
%o from sympy import prod, sieve as prime
%o def A072472(n):
%o return prod(range(prime[n]+1, prime[n+1]+1)) # _Karl-Heinz Hofmann_, Apr 17 2023
%o (PARI) a(n) = prod(k=prime(n)+1, prime(n+1), k); \\ _Michel Marcus_, Apr 17 2023
%Y Cf. A000040, A061214, A361760, A361761.
%K nonn
%O 1,1
%A _Amarnath Murthy_, Jun 20 2002
%E Edited by _Robert G. Wilson v_, Jun 21 2002
%E Offset, data and name corrected by _Karl-Heinz Hofmann_, Apr 18 2023