login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes prime(k) such that the number of binary 1's in prime(k) equals the number of binary 1's in k.
11

%I #15 Aug 03 2023 03:44:22

%S 2,5,41,67,73,83,97,113,193,197,211,269,281,283,353,389,521,523,547,

%T 563,587,593,601,647,661,691,929,937,1061,1063,1097,1109,1117,1123,

%U 1289,1319,1361,1381,1489,1549,1559,1567,1571,1579,1597,1801,1873,2069

%N Primes prime(k) such that the number of binary 1's in prime(k) equals the number of binary 1's in k.

%H Amiram Eldar, <a href="/A072439/b072439.txt">Table of n, a(n) for n = 1..10000</a>

%F A000120(a(n)) = A000120(A071600(n)) = A014499(n).

%F A090455(A049084(a(n))) = 0.

%F a(n) = A000040(A071600(n)).

%e In binary representation 13 and A000040(13)=41 have three 1's: 13='1101' and 41='101001', therefore 41 is a term.

%t Prime[Select[Range[400], DigitCount[#, 2, 1] == DigitCount[Prime[#], 2, 1] &]] (* _Amiram Eldar_, Aug 03 2023 *)

%o (PARI) isok(p) = isprime(p) && ((hammingweight(p) == hammingweight(primepi(p)))); \\ _Michel Marcus_, Jun 14 2021

%Y Cf. A000040, A000120, A014499, A033548, A049084, A071600, A090455.

%K nonn,base

%O 1,1

%A _Reinhard Zumkeller_, Jun 17 2002