Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 26 2022 10:48:03
%S 0,1,1,2,1,2,1,2,2,2,1,2,1,2,1,3,1,2,1,2,2,2,1,2,2,2,2,3,1,3,1,2,1,2,
%T 1,3,1,2,2,3,1,3,1,3,2,2,1,3,2,2,1,2,1,2,2,2,2,2,1,2,1,2,3,2,1,3,1,2,
%U 1,3,1,3,1,2,2,3,1,3,1,3,2,2,1,2,1,2,1,3,1,3,1,3,2,2,1,3,1,2,2,4,1,3,1,3,2
%N Number of iterations of the map k -> A000001(k) needed to reach 1 starting at n, or -1 if no such number exists.
%C The old entry with this sequence number was a duplicate of A052409.
%C It appears that a(n) is the number of times n appears in A142978, excluding the first column of infinitely many 1's. - _Ron Wolf_, Dec 16 2020
%C Preceding comment is incorrect. The first counterexample is a(19) = 1, whereas 19 appears twice in A142978. - _Eric M. Schmidt_, Mar 22 2021
%H Eric M. Schmidt, <a href="/A072410/b072410.txt">Table of n, a(n) for n = 1..2047</a> [using data from example and A000001. a(1024) corrected by _Jinyuan Wang_, Jun 26 2022]
%H John H. Conway, Heiko Dietrich and E. A. O'Brien, <a href="http://www.math.auckland.ac.nz/~obrien/research/gnu.pdf">Counting groups: gnus, moas and other exotica</a>.
%e Conway et al. remark that every number less than 2048 reaches 1 after at most 5 steps and give the following examples:
%e 672 -> 1280 -> 1116461 -> 1
%e 1024 -> 49487367289 -> 1
%e 720 -> 840 -> 186 -> 6 -> 2 -> 1
%e 320 -> 1640 -> 68 -> 5 -> 1
%e 384 -> 20169 -> 67 -> 1
%e 128 -> 2328 -> 64 -> 267 -> 1
%e 960 -> 11394 -> 60 -> 13 -> 1
%e 864 -> 4725 -> 51 -> 1
%e 1344 -> 11720 -> 49 -> 2 -> 1
%e 1440 -> 5958 -> 16 -> 14 -> 2 -> 1
%e 1248 -> 1460 -> 15 -> 1
%e 256 -> 56092 -> 11 -> 1
%e 1728 -> 47937 -> 6 -> 2 -> 1
%e 512 -> 10494213 -> 5 -> 1
%e 1536 -> 408641062 -> 4 -> 2 -> 1
%e 1664 -> 21507 -> 2 -> 1
%e 1280 -> 1116461 -> 1
%Y Cf. A000001, A066952 (indices of records).
%K nonn
%O 1,4
%A _N. J. A. Sloane_, Oct 03 2008