login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies A(A(x)) = tan(x), where A(x) = Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)!.
1

%I #28 Jan 15 2024 11:06:42

%S 1,1,3,17,225,3613,-42997,8725357,2116966081,-549193907111,

%T -114757574954509,117893333517545097,14433599120070484321,

%U -65568697910890921624715,2968238619232726100394235,86999609037195113208781248165

%N E.g.f. A(x) satisfies A(A(x)) = tan(x), where A(x) = Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)!.

%C The inverse of this g.f. A(x) is the g.f. of A095885. - _Paul D. Hanna_, Dec 09 2004

%H Paul D. Hanna, <a href="/A072350/b072350.txt">Table of n, a(n) for n = 1..40</a>

%H Dmitry Kruchinin, Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation A^{2^n}(x)=F(x)</a>, arXiv:1302.1986 [math.CO], 2013.

%F a(n)=(2*n-1)!*T(2*n-1,1), T(n,k)=if n=k then 1 else 1/2*(T059419(n,k)*k!/n!-sum(i=k+1..n-1, T(n,i)*T(i,k))). [_Vladimir Kruchinin_, Nov 11 2011]

%e a(x) = x/1!+x^3/3!+3*x^5/5!+17*x^7/7!+225*x^9/9!+3613*x^11/11!-42997*x^13/13!+...

%t a[n_] := Module[{A, B, F}, F = Tan[x + O[x]^(2n+1)]; A = F; For[i = 0, i <= 2n-1, i++, B = InverseSeries[A, x]; A = (A + (B /. x -> F))/2]; If[n<1, 0, (2n-1)!*SeriesCoefficient[A, {x, 0, 2n-1}]]]; Table[a[n], {n, 1, 16}] (* _Jean-François Alcover_, Oct 29 2015, adapted from PARI *)

%o (PARI) {a(n)=local(A,B,F);F=tan(x+O(x^(2*n+1)));A=F; for(i=0,2*n-1,B=serreverse(A);A=(A+subst(B,x,F))/2); if(n<1,0,(2*n-1)!*polcoeff(A,2*n-1,x))} \\ _Paul D. Hanna_, Dec 09 2004

%Y Cf. A048602, A048603, A052134, A052135.

%Y Cf. A095885 (inverse).

%K sign

%O 1,3

%A _Vladeta Jovovic_, Jul 17 2002

%E More terms from _Paul D. Hanna_, Dec 09 2004