Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Aug 18 2020 03:22:13
%S 1373653,1530787,1987021,2284453,3116107,5173601,6787327,11541307,
%T 13694761,15978007,16070429,16879501,25326001,27509653,27664033,
%U 28527049,54029741,61832377,66096253,74927161,80375707,101649241
%N Strong pseudoprimes to bases 2 and 3.
%C Composites that pass the Miller-Rabin test for bases 2 and 3. The intersection of A001262 (strong pseudoprimes to base 2) and A020229 (strong pseudoprimes to base 3).
%C The Washington Bomfim link references a table with all terms up to 2^64. Data from Jan Feitsma and William Galway, see link below, permitted an easy determination of these terms. I tested the Mathematica function PrimeQ[n] with those numbers to verify that it is correct for all n < 2^64. - _Washington Bomfim_, May 13 2012
%H Don Reble, <a href="/A072276/b072276.txt">Table of n, a(n) for n = 1..10000</a>
%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 39.10, pp. 786-792
%H D. Bleichenbacher, <a href="http://www.bell-labs.com/user/bleichen/diss/thesis.html">Thesis and strong pseudoprimes to 2 and 3 up to 10^16</a>
%H Washington Bomfim, <a href="http://dl.dropbox.com/u/79527920/bF23.txt">Table of n, a(n) for n=1..1499371</a> [a large file]
%H Jan Feitsma and William Galway, <a href="http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html">Tables of pseudoprimes and related data</a>
%H A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, <a href="http://www.cacr.math.uwaterloo.ca/hac/">Handbook of Applied Cryptography</a>, section 4.2.3, Miller-Rabin test.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html">Rabin-Miller test</a>
%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>
%t nmax = 10^8; sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n - 1, 2]; d = (n - 1)/2^s; If[ PowerMod[b, d, n] == 1, Return[True], Do[ If[ PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A072276 = {}; n = 1; While[n < nmax, n = n+2; If[sppQ[n, 2] && sppQ[n, 3] , Print[n]; AppendTo[ A072276, n]]]; A072276 (* _Jean-François Alcover_, Oct 20 2011, after _R. J. Mathar_ *)
%Y Cf. A001262, A006945, A014233, A020229.
%K nonn
%O 1,1
%A _Francois R. Grieu_, Jul 09 2002