login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(Number of oddly factored numbers <= n) - (number of evenly factored numbers <= n).
4

%I #38 Dec 21 2022 04:49:26

%S 0,1,2,1,2,1,2,3,2,1,2,3,4,3,2,1,2,3,4,5,4,3,4,3,2,1,2,3,4,5,6,7,6,5,

%T 4,3,4,3,2,1,2,3,4,5,6,5,6,7,6,7,6,7,8,7,6,5,4,3,4,3,4,3,4,3,2,3,4,5,

%U 4,5,6,7,8,7,8,9,8,9,10,11,10,9,10,9,8,7,6,5,6,5,4,5,4,3,2,1,2,3,4,3,4,5,6

%N (Number of oddly factored numbers <= n) - (number of evenly factored numbers <= n).

%C A number m is oddly or evenly factored depending on whether m has an odd or even number of prime factors, e.g., 12 = 2*2*3 has 3 factors so is oddly factored.

%C Polya conjectured that a(n) >= 0 for all n, but this was disproved by Haselgrove. Lehman gave the first explicit counterexample, a(906180359) = -1; the first counterexample is at 906150257 (Tanaka).

%D G. Polya, Mathematics and Plausible Reasoning, S.8.16.

%H T. D. Noe, <a href="/A072203/b072203.txt">Table of n, a(n) for n = 1..10000</a>

%H C. B. Haselgrove, <a href="http://dx.doi.org/10.1112/S0025579300001480">A disproof of a conjecture of Polya</a>, Mathematika 5 (1958), pp. 141-145.

%H R. S. Lehman, <a href="http://dx.doi.org/10.1090/S0025-5718-1960-0120198-5">On Liouville's function</a>, Math. Comp., 14 (1960), 311-320.

%H Kyle Sturgill-Simon, <a href="http://www.carroll.edu/library/thesisArchive/Sturgill-Simon_2012final.pdf">An interesting opportunity: the Gilbreath conjecture</a>, Honors Thesis, Mathematics Dept., Carroll College, 2012.

%H M. Tanaka, <a href="http://dx.doi.org/10.3836/tjm/1270216093">A Numerical Investigation on Cumulative Sum of the Liouville Function</a>, Tokyo J. Math. 3:1, 187-189, 1980.

%F a(n) = 1 - A002819(n). - _T. D. Noe_, Feb 06 2007

%t f[n_Integer] := Length[Flatten[Table[ #[[1]], {#[[2]]}] & /@ FactorInteger[n]]]; g[n_] := g[n] = g[n - 1] + If[ EvenQ[ f[n]], -1, 1]; g[1] = 0; Table[g[n], {n, 1, 103}]

%t Join[{0},Accumulate[Rest[Table[If[OddQ[PrimeOmega[n]],1,-1],{n,110}]]]] (* _Harvey P. Dale_, Mar 10 2013 *)

%t Table[1 - Sum[(-1)^PrimeOmega[i], {i, 1, n}], {n, 1, 100}] (* _Indranil Ghosh_, Mar 17 2017 *)

%o (Haskell)

%o a072203 n = a072203_list !! (n-1)

%o a072203_list = scanl1 (\x y -> x + 2*y - 1) a066829_list

%o -- _Reinhard Zumkeller_, Nov 19

%o (PARI) a(n) = 1 - sum(i=1, n, (-1)^bigomega(i));

%o for(n=1, 100, print1(a(n),", ")) \\ _Indranil Ghosh_, Mar 17 2017

%o (Python)

%o from functools import reduce

%o from operator import ixor

%o from sympy import factorint

%o def A072203(n): return 1+sum(1 if reduce(ixor, factorint(i).values(),0)&1 else -1 for i in range(1,n+1)) # _Chai Wah Wu_, Dec 20 2022

%Y Cf. A028488, A002819, A051470, A066829.

%K sign,nice,easy,look

%O 1,3

%A Bill Dubuque (wgd(AT)zurich.ai.mit.edu), Jul 03 2002

%E Edited and extended by _Robert G. Wilson v_, Jul 13 2002

%E Comment corrected by _Charles R Greathouse IV_, Mar 08 2010