login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072156
Numerator of Sum_{k=1..n} phi(k)/k^2.
2
1, 5, 53, 115, 3163, 3263, 170687, 352399, 1096397, 223513, 28103473, 28459213, 4963286677, 5029541437, 25532475569, 51741301813, 15299527769557, 15415359085157, 5677532668504877, 1144538596366201, 1156827116999161, 1166157760248361, 626832724103131129
OFFSET
1,2
LINKS
EXAMPLE
1, 5/4, 53/36, 115/72, 3163/1800, 3263/1800, 170687/88200, ...
MAPLE
with(numtheory); seq(numer(add(phi(k)/k^2, k = 1..n)), n = 1..25); # G. C. Greubel, Aug 25 2019
MATHEMATICA
Numerator[Table[Sum[EulerPhi[k]/k^2, {k, n}], {n, 30}]] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(PARI) a(n) = numerator( sum(k=1, n, eulerphi(k)/k^2));
vector(25, n, a(n)) \\ G. C. Greubel, Aug 25 2019
(Magma) [Numerator( &+[EulerPhi(k)/k^2: k in [1..n]] ): n in [1..25]]; // G. C. Greubel, Aug 25 2019
(Sage) [numerator( sum(euler_phi(k)/k^2 for k in (1..n)) ) for n in (1..25)] # G. C. Greubel, Aug 25 2019
(GAP) List([1..25], n-> NumeratorRat( Sum([1..n], k-> Phi(k)/k^2) ) ); # G. C. Greubel, Aug 25 2019
CROSSREFS
Cf. A072157.
Sequence in context: A142399 A107004 A139869 * A101190 A201017 A106097
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 28 2002
STATUS
approved