Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 30 2012 17:38:44
%S 1,3,6,8,10,13,16,19,20,22,28,31,30,33,38,40,42,43,46,53,54,52,58,63,
%T 62,65,68,70,76,77,76,83,86,84,90,93,92,99,102,100,106,109,108,115,
%U 116,114,124,127,122,129,134,132,138,139,138,149,150,144,154,159
%N Coordination sequence for AlPO_4-11 structure with respect to node (X) where decagon and two hexagons meet.
%C There are three types of nodes in this structure.
%C The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.
%H Joseph Myers, <a href="/A072149/b072149.txt">Table of n, a(n) for n = 0..1000</a>
%H M. E. Davis, <a href="http://dx.doi.org/10.1038/nature00785">Ordered porous materials for emerging applications</a>, Nature, 417 (Jun 20 2002), 813-821 (gives structure).
%H N. J. A. Sloane, <a href="/A072150/a072150.gif">AlPO_4-11 structure, after Davis</a>
%H R. J. Mathar, <a href="/A072149/a072149.ps">Illustration of counts and adjacencies</a> (PostScript)
%F Empirical: G.f. 1 +x*(3 +6*x +11*x^2 +13*x^3 +15*x^4 +15*x^5 +16*x^6 +15*x^7 +15*x^8 +13*x^9 +11*x^10 +6*x^11 +3*x^12) / ( (1+x^2)*(x^6+x^3+1)*(x-1)^2*(1+x+x^2)^2 ) with a(n)= -a(n-2) +a(n-3) +a(n-5) +a(n-9) +a(n-11) -a(n-12) -a(n-14). - R. J. Mathar, Sep 30 2011
%Y Cf. A072150-A072154.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jun 28 2002
%E More terms from _R. J. Mathar_, Mar 29 2007
%E Extended by _Joseph Myers_, Sep 29 2011