login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072122
Numbers with 12 odd integers in their Collatz (or 3x+1) trajectory.
3
39, 78, 79, 153, 156, 157, 158, 305, 306, 307, 312, 314, 315, 316, 317, 610, 611, 612, 613, 614, 624, 628, 629, 630, 631, 632, 634, 647, 683, 687, 1220, 1221, 1222, 1224, 1226, 1228, 1229, 1241, 1248, 1256, 1257, 1258, 1260, 1261, 1262, 1264, 1265, 1268
OFFSET
1,1
COMMENTS
The Collatz (or 3x+1) function is f(x) = x/2 if x is even, 3x+1 if x is odd. The Collatz trajectory of n is obtained by applying f repeatedly to n until 1 is reached.
REFERENCES
J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
LINKS
J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
EXAMPLE
trajectory: 39, 118, 59, 178, 89, 268, 134, 67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 has 12 odd numbers.
MATHEMATICA
odd12Q[n_]:=Count[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>1&], _?OddQ]==12; Select[Range[1300], odd12Q] (* Harvey P. Dale, Oct 17 2011 *)
CROSSREFS
Column k=12 of A354236.
Sequence in context: A253153 A044105 A044486 * A355852 A290815 A355857
KEYWORD
easy,nonn
AUTHOR
Jim Nastos, Jun 19 2002
STATUS
approved