login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

In prime factorization of n replace all primes with their numbers of 1's in binary representation.
8

%I #28 Feb 19 2019 15:17:27

%S 1,1,2,1,2,2,3,1,4,2,3,2,3,3,4,1,2,4,3,2,6,3,4,2,4,3,8,3,4,4,5,1,6,2,

%T 6,4,3,3,6,2,3,6,4,3,8,4,5,2,9,4,4,3,4,8,6,3,6,4,5,4,5,5,12,1,6,6,3,2,

%U 8,6,4,4,3,3,8,3,9,6,5,2,16,3,4,6,4,4,8,3,4,8,9,4,10,5,6

%N In prime factorization of n replace all primes with their numbers of 1's in binary representation.

%C a(n)<n for n>1.

%C Multiplicative with a(p^e) = A000120(p)^e. - _Mitch Harris_, Apr 19 2005

%H Reinhard Zumkeller, <a href="/A072084/b072084.txt">Table of n, a(n) for n = 1..10000</a>

%F Completely multiplicative with a(p) = number of 1's in binary representation of prime p.

%F Multiplicative with a(p^e) = A000120(p)^e

%e a(30) = a(2*3*5) = a(2)*a(3)*a(5) = 1*2*2 = 4,

%e as a(2)=a('10')=1, a(3)=a('11')= 2 and a(5)=a('101')=2.

%p A072084 := proc(n) local a,c; readlib(ifactors):

%p a := n -> add(i,i=convert(n, base, 2));

%p mul(a(c[1])^c[2],c=ifactors(n)[2]) end:

%p # _Peter Luschny_, Jan 16 2010

%t a[n_] := Times @@ Power @@@ (FactorInteger[n] /. {p_Integer, e_} :> {DigitCount[p, 2, 1], e}); Array[a, 100] (* _Jean-François Alcover_, Feb 09 2018 *)

%o (Sage) A072084 = lambda n: prod(p.digits(base=2).count(1)**m for p,m in factor(n)) # _D. S. McNeil_, Jan 17 2011

%o (Haskell)

%o a072084 = product . map a000120 . a027746_row

%o -- _Reinhard Zumkeller_, Feb 10 2013

%o (PARI) a(n)=my(f=factor(n)); f[,1]=apply(hammingweight, f[,1]); factorback(f) \\ _Charles R Greathouse IV_, Aug 06 2015

%Y Cf. A000120, A072085, A072087, A027746, A014499.

%K nonn,base,mult

%O 1,3

%A _Reinhard Zumkeller_, Jun 14 2002