Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 05 2023 11:03:29
%S 2,7,13,67,283,607,1093,12757,22963,49207,482233,1623847,797161,
%T 14614627,19929037,35872267,150663523,2044719247,1355971711,
%U 9879222469,37773497677,200490103057,172595827849,235357947067,1176789735337,5507375961379,10591107618037
%N Smallest prime p such that 2*p+1 has n prime factors (with multiplicity).
%H Daniel Suteu, <a href="/A072060/b072060.txt">Table of n, a(n) for n = 1..500</a>
%e a(4)=67=A000040(19): 2*67+1 = 135 = 5*3^3, 4 factors.
%o (PARI)
%o generate(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(isprime((t-1)/2), listput(list, (t-1)/2))), forprime(q = p, sqrtnint(B\m, n), my(t=m*q); list=concat(list, f(t, q, n-1)))); list); vecsort(Vec(f(1, 3, n)));
%o a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ _Daniel Suteu_, Feb 05 2023
%Y Cf. A001222, A023595, A072055, A072059.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Jun 11 2002
%E More terms from _Don Reble_, Apr 15 2003