login
Greatest common divisor of product of divisors of n and product of non-divisors < n.
3

%I #22 Jun 26 2022 02:11:28

%S 1,1,1,1,1,4,1,2,3,4,1,144,1,4,45,32,1,72,1,320,63,4,1,82944,125,4,

%T 729,448,1,162000,1,32768,99,4,1225,3359232,1,4,117,2560000,1,63504,1,

%U 704,91125,4,1,254803968,343,125000,153,832,1,8503056,3025,9834496,171,4,1

%N Greatest common divisor of product of divisors of n and product of non-divisors < n.

%H Reinhard Zumkeller, <a href="/A072046/b072046.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = GCD(A007955(n), A055067(n)).

%e a(12) = GCD(A007955(12), A055067(12)) = GCD(1*2*3*4*6*12,5*7*8*9*10*11) = GCD(1728,277200) = 144;

%e a(13) = GCD(A007955(13), A055067(13)) = GCD(1*13,2*3*4*5*6*7*8*9*10*11*12) = GCD(13,479001600) = 1.

%t a[n_] := (dd = Divisors[n]; GCD[Times @@ dd, Times @@ Complement[Range[n], dd]]); Array[a, 59]

%t a[n_] := GCD[(p = n^(DivisorSigma[0, n]/2)), n!/p]; Array[a, 60] (* _Amiram Eldar_, Jun 26 2022 *)

%o (Haskell)

%o a072046 n = gcd (a007955 n) (a055067 n)

%o -- _Reinhard Zumkeller_, Feb 06 2012

%o (Python)

%o from math import isqrt, gcd, factorial

%o from sympy import divisor_count

%o def A072046(n): return gcd(p:=isqrt(n)**c if (c:=divisor_count(n)) & 1 else n**(c//2),factorial(n)//p) # _Chai Wah Wu_, Jun 25 2022

%Y Cf. A007955, A055067.

%K nonn,nice

%O 1,6

%A _Reinhard Zumkeller_, Jul 29 2002