login
Smallest solution to gcd(x, reverse(x)) = 5^n.
5

%I #22 Oct 30 2019 04:41:02

%S 5,5200,521000,5213750,521875,5218750,52130234375,5734841796875,

%T 57869714843750,526046650390625,5265674365234375,52187008544921875,

%U 526515306396484375,5213023309008789062500,5213596736358642578125,5260466086273193359375,526041911745452880859375

%N Smallest solution to gcd(x, reverse(x)) = 5^n.

%H Hiroaki Yamanouchi, <a href="/A072021/b072021.txt">Table of n, a(n) for n = 1..25</a>

%F a(n) = A069554(5^n).

%e For n = 4, gcd(521875, 578125) = 3125 = 5^4.

%e For n = 8, a(8) = 5734841796875 = 5^9*2936239, reverse(a(8)) = 5786971484375 = 5^8*71*208657.

%o (PARI) a(n) = {my(k = 1); while (gcd(k, fromdigits(Vecrev(digits(k)))) != 5^n, k++); k;} \\ _Michel Marcus_, Jul 13 2018

%Y Cf. A004086, A055483, A069554, A071686, A072005, A072050, A072016-A072018.

%K nonn,base

%O 1,1

%A _Labos Elemer_, Jun 06 2002

%E a(9)-a(18) from _Hiroaki Yamanouchi_, Sep 10 2014